How to find the intersection values?
    8 views (last 30 days)
  
       Show older comments
    
How to find the intersection values  of line(black) and the curve(blue)
clc
close all
d1 = 0.4;d2 = 0.6;d = d1 + d2;
n1 = sqrt(12);n2 = 1;
lambda = linspace(400e-3,800e-3, 100000);
D1 = (2*pi*n1*d1)./lambda;D2 = (2*pi*n2*d2)./lambda;
RHS = cos(D1).*cos(D2) - 0.5*(n1^2+n2^2)/(n1*n2) * sin(D1) .*sin(D2);
plot(lambda,RHS)
hold on
yline(-1);
hold off
hold on
yline(1);
0 Comments
Accepted Answer
  Bruno Luong
      
      
 on 17 Aug 2023
        d1 = 0.4;d2 = 0.6;d = d1 + d2;
n1 = sqrt(12);n2 = 1;
lambda = linspace(400e-3,800e-3, 100000);
D1 = (2*pi*n1*d1)./lambda;D2 = (2*pi*n2*d2)./lambda;
RHS = cos(D1).*cos(D2) - 0.5*(n1^2+n2^2)/(n1*n2) * sin(D1) .*sin(D2);
plot(lambda,RHS)
hold on
for yx = [-1 1]
    yline(yx);
    ys = RHS-yx;
    i = find(ys(1:end-1).*ys(2:end) <= 0);
    % linear interpolation
    i1 = i; ss1 = ys(i1);
    i2 = i1 + 1; ss2 = ys(i2);
    w = ss2./(ss2-ss1);
    xx = w.*lambda(i1) + (1-w).*lambda(i2);
    plot(xx, yx+zeros(size(xx)), 'rx')
end
More Answers (1)
  Torsten
      
      
 on 17 Aug 2023
        format long
d1 = 0.4;d2 = 0.6;d = d1 + d2;
n1 = sqrt(12);n2 = 1;
D1 = @(lambda)(2*pi*n1*d1)./lambda;D2 = @(lambda)(2*pi*n2*d2)./lambda;
RHS = @(lambda)cos(D1(lambda)).*cos(D2(lambda)) - 0.5*(n1^2+n2^2)/(n1*n2) * sin(D1(lambda)) .*sin(D2(lambda));
% Case -1
start = [0.42,0.45,0.56,0.59,0.72];
offset = -1;
rhs = @(lambda) RHS(lambda)-offset;
for i = 1:numel(start)
    sol(i) = fsolve(rhs,start(i),optimset('Display','none'));
end
sol
% Case 1
start = [0.4,0.47,0.52,0.63,0.67];
offset = 1;
rhs = @(lambda) RHS(lambda)-offset;
for i = 1:numel(start)
    sol(i) = fsolve(rhs,start(i),optimset('Display','none'));
end
sol
0 Comments
See Also
Categories
				Find more on Time Series in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
