Elevar un polinomio al cuadrado

7 views (last 30 days)
Johan
Johan on 9 Sep 2023
Commented: Johan on 9 Sep 2023
Tengo este polinomio el cual contiene números racionales:
g = [3/2 -1/4 -1/3];
secondT = poly2sym(g); % g pero como polinomio
Lo necesito elevar al cuadrado, pero no encuetro ningúna forma para hacer esto. O sea, puedo elevar a g al cuadrado sin ningún problema:
disp(g.^2);
Pero necesito multiplicar los exponentes de la variable (x). Cuando trato de elevar secondT me da este resultado:
(x/4 - (3*x^2)/2 + 1/3)^2
  1 Comment
John D'Errico
John D'Errico on 9 Sep 2023
Edited: John D'Errico on 9 Sep 2023
Sorry, that my high school Spanish is far too long out of date. :( Google translate:
I have this polynomial which contains rational numbers:
g = [3/2 -1/4 -1/3];
secondT = poly2sym(g); % g but as a polynomial
I need to square it, but I can't find any way to do this. That is, I can square g without any problem:
disp(g.^2);
But I need to multiply the exponents of the variable (x). When I try to raise secondT it gives me this result:
(x/4 - (3*x^2)/2 + 1/3)^2

Sign in to comment.

Accepted Answer

John D'Errico
John D'Errico on 9 Sep 2023
Edited: John D'Errico on 9 Sep 2023
Easy enough.
g = [3/2 -1/4 -1/3];
gsym = poly2sym(g);
gsym^2
ans = 
And as you know, it squares the polynomial, but does not expand it. Nothing stops you from using the symbolic toolbox however.
expand(gsym^2)
ans = 
Could you also have done this without using the symbolic toolbox at all? Well, yes, using conv you can multiply polynomials in double precision rthmetic. But then you will be stuck with doubles, not exact fractional coefficients. If you don't push things too far though, you could have done this...
format rat
conv(g,g)
ans =
9/4 -3/4 -15/16 1/6 1/9
And format rat comes to save the day. Again, don't push things too far, as it has limits.
  4 Comments
Walter Roberson
Walter Roberson on 9 Sep 2023
sympref('PolynomialDisplayStyle', 'descend');
syms x c2 c1 c0
gsym = c2*x^2 + c1*x + c0
gsym = 
gsym^2
ans = 
expand(ans)
ans = 
so the -(3*x^3)/4 is 2 * (3/2) * (-1/4)

Sign in to comment.

More Answers (0)

Categories

Find more on Spline Postprocessing in Help Center and File Exchange

Products


Release

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!