Parallelizing For Loops - Issue
17 views (last 30 days)
Show older comments
Hi there, I'm attempting to parallelize a nested for loop as seen below that is running linear programs via a Gurobi solver.
for ir = 1:n-1
Aeq = AugS; beq = zeros(m,1);
newRow = zeros(1,n);
newRow(ir) = 1;
AeqNew = [Aeq; newRow];
beqNew = [beq; 1];
Aeqlb = [modelUpd.lb; -1];
Aeqlb(idxCSource) = CsourceLB;
Aeqlb(idxObj) = BiomassLB;
Aequb = modelUpd.ub;
Aineq = [diag(diag(ones(length(modelUpd.rxns)))) -Aequb(1:end);
-diag(diag(ones(length(modelUpd.rxns)))) Aeqlb(1:end-1);
zeros(1,length(modelUpd.rxns)) Aeqlb(end)];
bineq = zeros(size(Aineq,1),1);
for jr = 1:1:n-1
%Build Gurobi model;
modelG.A = sparse([Aineq; AeqNew]);
modelG.rhs = [bineq; beqNew];
modelG.lb = -1000*ones(n,1);
modelG.ub = 1000*ones(n,1);
modelG.sense = [repmat('<',1,size(Aineq,1)) repmat('=',1,size(AeqNew,1))];
%To find the minimum flux values.
f = zeros(1,n);
f(jr) = 1;
modelG.modelsense = 'min';
modelG.obj = f;
params.outputflag = 0;
result = gurobi(modelG,params);
if strcmp(result.status, 'OPTIMAL')
fluxMin1(ir,jr) = result.objval;
else
fluxMin1(ir,jr) = "N/A";
end
%To find the maximum flux values.
f(jr) = 1;
modelG.modelsense = 'max';
modelG.obj = f;
params.outputflag = 0;
result = gurobi(modelG,params);
if strcmp(result.status, 'OPTIMAL')
fluxMax1(ir,jr) = result.objval;
else
fluxMax1(ir,jr) = "N/A";
end
f(jr) = 0;
end
end
Unfortunately, I keep getting the error: 'The PARFOR look cannot run due to the way variable 'modelG' is used.'
However, I cannot fix this variable as I'd seen similarly done as the modelG variable is a structure containing sparse matrices, modelsense options, etc.
Any help with somehow parallelizing this code would be great as it's currently running 8.4 million linear programs which is taking 0.5 secs each -- so I'm looking at a code that is running 3.5 days. :'D
Thanks!
0 Comments
Answers (4)
Matt J
on 12 Sep 2023
Edited: Matt J
on 12 Sep 2023
I would use parfor just to run the n gurobi optimizations. After you've collected all the results in a struct array Results(jr), you can post-process them.
modelG.A = sparse([Aineq; AeqNew]);
modelG.rhs = [bineq; beqNew];
modelG.lb = -1000*ones(n,1);
modelG.ub = 1000*ones(n,1);
modelG.sense = [repmat('<',1,size(Aineq,1)) repmat('=',1,size(AeqNew,1))];
modelG.modelsense = 'min';
modelG.obj=zeros(1,n);
params.outputflag = 0;
parfor jr=1:n
mdl=modelG;
mdl.obj(jr) = 1;
s = gurobi(mdl,params);
Results(jr).status=s.status;
Results(jr).optval=s.optval;
end
1 Comment
Walter Roberson
on 13 Sep 2023
Structuring it this way to avoid re-assigning all of those fields is a good idea.
Walter Roberson
on 12 Sep 2023
It looks like it is not treating modelG as a local variable. That implies that there is a reference to modelG either before the parfor or else after the parfor.
I suggest that at the beginning of the for j loop (which is what I presume you are turning into parfor) that you add
modelG = struct();
That will force parfor j to treat modelG as local to the parfor iteration.
0 Comments
Sam Marshalik
on 13 Sep 2023
You may be able to put the contents of the parfor-loop into a separate function and calling that function from that parfor-loop. It resolves the error message, but I have not had a chance to run it.
0 Comments
Rongxing
8 minutes ago
An easy way to avoid this kind of issue is to use a function for the solving part in the parfor loop. MATLAB may not be good enough to distinguish assigned variables and models (with the same names) between each parallel calculations.
0 Comments
See Also
Categories
Find more on Loops and Conditional Statements in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!