How to solve these non-linear equations?

11 views (last 30 days)
Samir Thapa
Samir Thapa on 2 Nov 2023
Commented: Sam Chak on 3 Nov 2023
syms a b c
i1 = 310;
i2 = 349.64;
i3 = 353;
c1 = 11.1984;
n1 = 0.5067;
c2 = 15.9867;
n2 = 0.4271;
c3 = 8.6028;
n3 = 0.2449;
mpl = 308.5;
eqn1 = 48.62236629 - (a + b + c + mpl)/mpl == 0;
eqn2 = i1*(1 - n1 * c1* a^(n1-1))/(1-c1*a^(n1-1)) *(1-c1*a^(n1-1)*((a+b+c+mpl)/(c1*a^n1 + b+c+mpl))) - i2 * (1-n2*c2*b^(n2-1)*((b+c+mpl)/(c2*b^n2+c+mpl))) == 0;
eqn3 = i2*(1 - n2 * c2* b^(n2-1))/(1-c2*b^(n2-1)) *(1-c2*b^(n2-1)*((b+c+mpl)/(c2*b^n2+c+mpl))) - i3 * (1-n3*c3*c^(n3-1)*((c+mpl)/(c3*c^n3+mpl))) == 0;
system = [eqn1,eqn2,eqn3];

Answers (3)

Yash
Yash on 2 Nov 2023
Edited: Yash on 3 Nov 2023
Hi Samir,
To solve nonlinear equations in MATLAB, you can utilize the 'fsolve' function from the Optimization Toolbox. This function is specifically designed to find the roots of a system of nonlinear equations. By providing an initial guess, 'fsolve' attempts to converge to a solution that satisfies the equations.
The 'fsolve' function will attempt to find a solution for the system of equations starting from the initial guess provided. It will return the solution vector 'x' that satisfies the equations, or an error if it fails to converge.
To know more about the 'fsolve' function, refer to this documentation: https://in.mathworks.com/help/optim/ug/fsolve.html
Hope this helps!
  2 Comments
John D'Errico
John D'Errico on 2 Nov 2023
Edited: John D'Errico on 2 Nov 2023
Not completely correct. fsolve is not built in. It is part of the optimization toolbox, and only available if you have that toolbox. In my humble opinion, it is one of the most useful toolboxes I have, but not everyone will have it.
Yash
Yash on 3 Nov 2023
Edited: Yash on 3 Nov 2023
Even I had that toolbox installed, updated the answer, thanks!

Sign in to comment.


Sam Chak
Sam Chak on 2 Nov 2023
If you have the Optimization Toolbox installed, then you can use the 'fsolve' function to solve the system of nonlinear equations. However, some nonlinear systems can have multiple solutions, depending on the initial guess values that are chosen.
% Solution set #1
x0a = 1*[1, 1, 1];
[x, fval] = fsolve(@nonlinfcn, x0a)
Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient.
x = 1×3
1.0e+04 * 1.4656 0.0032 0.0003
fval = 1×3
1.0e-12 * -0.0071 0.3837 -0.2025
% Solution set #2
x0b = 2*[1, 1, 1];
[x, fval] = fsolve(@nonlinfcn, x0b)
Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient.
x = 1×3
1.0e+04 * 0.0689 1.3999 0.0004
fval = 1×3
1.0e-10 * 0.0053 -0.6560 0.0006
function F = nonlinfcn(x)
i1 = 310;
i2 = 349.64;
i3 = 353;
c1 = 11.1984;
n1 = 0.5067;
c2 = 15.9867;
n2 = 0.4271;
c3 = 8.6028;
n3 = 0.2449;
mpl = 308.5;
F(1) = 48.62236629 - (x(1) + x(2) + x(3) + mpl)/mpl;
F(2) = i1*(1 - n1*c1*x(1)^(n1 - 1))/(1 - c1*x(1)^(n1 - 1))*(1 - c1*x(1)^(n1 - 1)*((x(1) + x(2) + x(3) + mpl)/(c1*x(1)^n1 + x(2) + x(3) + mpl))) - i2*(1 - n2*c2*x(2)^(n2 - 1)*((x(2) + x(3) + mpl)/(c2*x(2)^n2 + x(3) + mpl)));
F(3) = i2*(1 - n2*c2*x(2)^(n2 - 1))/(1 - c2*x(2)^(n2 - 1))*(1 - c2*x(2)^(n2 - 1)*((x(2) + x(3) + mpl)/(c2*x(2)^n2 + x(3) + mpl))) - i3*(1 - n3*c3*x(3)^(n3 - 1)*((x(3) + mpl)/(c3*x(3)^n3 + mpl)));
end
  2 Comments
Dyuman Joshi
Dyuman Joshi on 2 Nov 2023
However, some nonlinear systems can have multiple solutions, and the output from fsolve will depend on the initial guess values that are chosen.

Sign in to comment.


Walter Roberson
Walter Roberson on 2 Nov 2023
There might be additional solutions.
Q = @(v) sym(v);
syms a b positive
syms c real
i1 = Q(310);
i2 = Q(34964) / Q(10)^2;
i3 = Q(353);
c1 = Q(111984) / Q(10)^4;
n1 = Q(5067) / Q(10)^4;
c2 = Q(159867) / Q(10)^4;
n2 = Q(4271) / Q(10)^4;
c3 = Q(86028) / Q(10)^4;
n3 = Q(2449) / Q(10)^4;
mpl = Q(308.5);
eqn1 = Q(4862236629) / Q(10)^8 - (a + b + c + mpl)/mpl == 0;
eqn2 = i1*(1 - n1 * c1* a^(n1-1))/(1-c1*a^(n1-1)) *(1-c1*a^(n1-1)*((a+b+c+mpl)/(c1*a^n1 + b+c+mpl))) - i2 * (1-n2*c2*b^(n2-1)*((b+c+mpl)/(c2*b^n2+c+mpl))) == 0;
eqn3 = i2*(1 - n2 * c2* b^(n2-1))/(1-c2*b^(n2-1)) *(1-c2*b^(n2-1)*((b+c+mpl)/(c2*b^n2+c+mpl))) - i3 * (1-n3*c3*c^(n3-1)*((c+mpl)/(c3*c^n3+mpl))) == 0;
system = ([eqn1; eqn2; eqn3])
system = 
start1 = [0.0689 1.3999 0.0004].' * 1e-4;
start2 = [9000 5000 4];
start3 = [14000 32 2];
sol1 = vpasolve(system, [a b c], start1)
sol1 = struct with fields:
a: 689.05838496729307867145108434607 b: 13998.717161477911435393065197254 c: 3.7244540197954859354837183999334
sol2 = vpasolve(system, [a b c], start2)
sol2 = struct with fields:
a: 9064.135929359262874364288421267 b: 5623.1253454523787386377782441771 c: 4.238725653358386997933334555938
sol3 = vpasolve(system, [a b c], start3)
sol3 = struct with fields:
a: 14656.340055193821157737413004269 b: 32.365749358899772536957181841301 c: 2.7941959122790697256298138895309
  4 Comments
John D'Errico
John D'Errico on 2 Nov 2023
Sorry, there is no hard rule that says you can positively stop looking at some point. Yes, a cubic polynomial has exactly 3 solutions. These are not cubics though. These equations are implicitly equivalent to a VERY high order polynomial. Those fractional powers make it so, if you could actually reduce the problem to a single equation in one unknown. You can't do so. And you can't even really know what order that impicit polynomial would be in such a case.
Sam Chak
Sam Chak on 3 Nov 2023
Thanks @Walter Roberson and @John D'Errico for the explanations. If you look at my code, you can already guess that my initial values were purely lucky guesses. I tried searching randomly, but complex-valued solutions were returned.

Sign in to comment.

Products


Release

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!