Why is this loop faster than a vectorised version? Could the vectorised version be made faster than the loop?
2 views (last 30 days)
Show older comments
I'm trying to improve performance in a code that uses a loop. I've written a vectorised version matching the functionality, while avoiding costly transposes. However, I've found that the loop version invariably runs ~25% more quickly. Is there any way to further improve the performance of the vectorised version so that it surpasses the loop?
Of course, this is a tiny sub-function of a much larger, more complex program, but it is called tens of thousands of times in a single run, and is a bottleneck in the run time.
I do have the parallel computing toolbox, so could look into using parfor loops, but these don't always save time, and I was surprised that the vectorised version doesn't perform better!
% Input vectors
x1 = rand(1, 960);
x2 = rand(1, 960);
%% Looped version
tic;
Y1 = 1.75:0.25:39;
Y2 = (10 .^ (Y1 / 21.366) - 1 ) / 0.004368;
EoutLoop = zeros(length(x2), length(Y1));
for i=1:length(Y1)
p1 = 4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1).*ones(1, length(x2));
p2 = 4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1) - 0.35.*(4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1)./4.*1000./24.673.*(0.004368.*1000 + 1)).*(x2 - 51);
p3 = p1.*(x1 >= Y2(i)) + p2 .* (x1 < Y2(i));
g1 = (x1 - Y2(i))./Y2(i);
g1 = abs(g1);
EiLoop = (1 + p3.*min(g1,4)).*exp(-1.*p3.*min(g1,4)).* 10.^(x2./10);
EoutLoop((1:length(x2)), i) = EiLoop(1:length(x2));
end
if (size(EoutLoop,1) > 1)
EoutLoop = sum(EoutLoop);
end
EoutLoop = 10 .* log(EoutLoop) ./ log(10);
% end timer
toc;
%% Vectorised version
% transpose input vector for vectorised version
x2 = x2.';
x1 = x1.';
% start timer
tic;
Y1 = 1.75:0.25:39;
Y2 = (10 .^ (Y1 / 21.366) - 1 ) / 0.004368;
EoutVec = zeros(length(x2), length(Y1));
p1 = 4.*Y2./24.673.*(0.004368.*Y2 + 1).*ones(length(x2), length(Y2));
p2 = 4.*Y2./24.673.*(0.004368.*Y2 + 1) - 0.35.*(4.*Y2./24.673.*(0.004368.*Y2 + 1)./4.*1000./24.673.*(0.004368.*1000 + 1)).*repmat((x2 - 51), 1, length(Y2));
p3 = p1.*(x1 >= repmat(Y2, 1, size(x1, 2))) + p2 .* (x1 < repmat(Y2, 1, size(x1, 2)));
g1 = ((x1 - repmat(Y2, 1, size(x1, 2)))./repmat(Y2, 1, size(x1, 2)));
g1 = abs(g1);
EVec = (1 + p3.*min(g1,4)).*exp(-1.*p3.*min(g1,4)).*repmat(10.^(x2./10), 1, length(Y2));
EoutVec((1:length(x2)), :) = EVec(1:length(x2), :);
if (size(EoutVec,1) > 1)
EoutVec = sum(EoutVec);
end
EoutVec = 10.*log(EoutVec)./log(10);
% end timer
toc;
3 Comments
Alexander
on 22 Nov 2023
I agree. On my old Win7 machine (R2021b) the result is
Loop: Elapsed time is 0.316945 seconds.
Vectorised: Elapsed time is 0.062135 seconds.
Accepted Answer
Dyuman Joshi
on 22 Nov 2023
Edited: Dyuman Joshi
on 22 Nov 2023
Ideally, timeit should be used over tic-toc to get a more accurate idea of run times of the codes. tic-toc is generally used for portions of code.
"Use the timeit function for a rigorous measurement of function execution time. Use tic and toc to estimate time for smaller portions of code that are not complete functions." Reference - Measure the Performance of Your Code
While using tic-toc to measure the time of the code, you can either
> Run the same code multiple times via a for loop and average the data - "Sometimes programs run too fast for tic and toc to provide useful data. If your code is faster than 1/10 second, consider measuring it running in a loop, and then average to find the time for a single run." (Reference - https://in.mathworks.com/help/matlab/ref/tic.html#bswc7ww-3)
or
> Take a large(r) dataset.
I have chosen the latter option below -
% Input vectors
%% Large(r) dataset
x1 = rand(1, 100000);
x2 = rand(1, 100000);
%% Looped version
Y1 = 1.75:0.25:39;
Y2 = (10 .^ (Y1 / 21.366) - 1 ) / 0.004368;
EoutLoop = zeros(length(x2), length(Y1));
tic;
for i=1:length(Y1)
p1 = 4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1).*ones(1, length(x2));
p2 = 4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1) - 0.35.*(4.*Y2(i)./24.673.*(0.004368.*Y2(i) + 1)./4.*1000./24.673.*(0.004368.*1000 + 1)).*(x2 - 51);
p3 = p1.*(x1 >= Y2(i)) + p2 .* (x1 < Y2(i));
g1 = (x1 - Y2(i))./Y2(i);
g1 = abs(g1);
EiLoop = (1 + p3.*min(g1,4)).*exp(-1.*p3.*min(g1,4)).* 10.^(x2./10);
EoutLoop((1:length(x2)), i) = EiLoop(1:length(x2));
end
if (size(EoutLoop,1) > 1)
EoutLoop = sum(EoutLoop);
end
EoutLoop = 10 .* log(EoutLoop) ./ log(10);
% end timer
toc;
%% Vectorised version
% transpose input vector for vectorised version
x2 = x2.';
x1 = x1.';
% start timer
Y1 = 1.75:0.25:39;
Y2 = (10 .^ (Y1 / 21.366) - 1 ) / 0.004368;
EoutVec = zeros(length(x2), length(Y1));
tic;
p1 = 4.*Y2./24.673.*(0.004368.*Y2 + 1).*ones(length(x2), length(Y2));
p2 = 4.*Y2./24.673.*(0.004368.*Y2 + 1) - 0.35.*(4.*Y2./24.673.*(0.004368.*Y2 + 1)./4.*1000./24.673.*(0.004368.*1000 + 1)).*repmat((x2 - 51), 1, length(Y2));
p3 = p1.*(x1 >= repmat(Y2, 1, size(x1, 2))) + p2 .* (x1 < repmat(Y2, 1, size(x1, 2)));
g1 = ((x1 - repmat(Y2, 1, size(x1, 2)))./repmat(Y2, 1, size(x1, 2)));
g1 = abs(g1);
EVec = (1 + p3.*min(g1,4)).*exp(-1.*p3.*min(g1,4)).*repmat(10.^(x2./10), 1, length(Y2));
EoutVec((1:length(x2)), :) = EVec(1:length(x2), :);
if (size(EoutVec,1) > 1)
EoutVec = sum(EoutVec);
end
EoutVec = 10.*log(EoutVec)./log(10);
% end timer
toc;
You can see that the time taken by the vectorized approach is less than half of the time taken by the for loop approach.
4 Comments
Dyuman Joshi
on 22 Nov 2023
You are welcome!
It's good to know that you are utilizing the Profiler, it is an extremely helpful tool!
More Answers (0)
See Also
Categories
Find more on Fourier Analysis and Filtering in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!