Error using mupadmex Error in MuPAD command: symbolic:sym:isAlways:LiteralCompare|0 < root(z^20 - (555455*z^19)/28224 + (21279533*z^18)/112896 - (524070713*z^17)/451584 + (331
2 views (last 30 days)
Show older comments
Imane Zemmouri
on 2 Jan 2024
Commented: Dyuman Joshi
on 2 Jan 2024
syms r;
eq = (3040*r^6 - 12432*r^4 + 18544*r^2 - 18592)^4 * sqrt(((1/2) + 1)^2 - r^2)^4 * sqrt(((1/2) - 1)^2 - r^2)^4 ...
- 2 * (3040*r^6 - 12432*r^4 + 18544*r^2 - 18592)^2 * (768*r^8 - 768*r^6 + 288*r^4 - 304*r^2 + 69)^2 ...
* sqrt(((1/2) - 1)^2 - r^2)^2 * sqrt(((1/2) + 1)^2 - r^2)^4 * r^4 ...
- 2 * (3040*r^6 - 12432*r^4 + 18544*r^2 - 18592)^2 * (768*r^8 - 6912*r^6 + 23328*r^4 - 35248*r^2 + 33081)^2 ...
* sqrt(((1/2) - 1)^2 - r^2)^4 * sqrt(((1/2) + 1)^2 - r^2)^2 * r^4 ...
+ (768*r^8 - 768*r^6 + 288*r^4 - 304*r^2 + 69)^4 * sqrt(((1/2) + 1)^2 - r^2)^4 * r^8 ...
- 2 * (768*r^8 - 768*r^6 + 288*r^4 - 304*r^2 + 69)^2 * (768*r^8 - 6912*r^6 + 23328*r^4 - 35248*r^2 + 33081)^2 ...
* sqrt(((1/2) + 1)^2 - r^2)^2 * sqrt(((1/2) - 1)^2 - r^2)^2 * r^8 ...
+ (768*r^8 - 6912*r^6 + 23328*r^4 - 35248*r^2 + 33081)^4 * sqrt(((1/2) - 1)^2 - r^2)^4 * r^8;
sol = solve(eq, r);
positive_solutions = sol(sol > 0);
disp(['q: ', num2str(length(positive_solutions))]);
0 Comments
Accepted Answer
Dyuman Joshi
on 2 Jan 2024
Edited: Dyuman Joshi
on 2 Jan 2024
solve() is unable to find an explicit solution to the given equation, which is expected given the degree of the polynomial - on simplifying the equation, you can observe that the highest power is 40.
There is no known method to find explicit solution for a polynomial of that degree.
Also, you should update the condition to check for non-complex roots as well.
syms r;
eq = (3040*r^6 - 12432*r^4 + 18544*r^2 - 18592)^4 * sqrt(((1/2) + 1)^2 - r^2)^4 * sqrt(((1/2) - 1)^2 - r^2)^4 ...
- 2 * (3040*r^6 - 12432*r^4 + 18544*r^2 - 18592)^2 * (768*r^8 - 768*r^6 + 288*r^4 - 304*r^2 + 69)^2 ...
* sqrt(((1/2) - 1)^2 - r^2)^2 * sqrt(((1/2) + 1)^2 - r^2)^4 * r^4 ...
- 2 * (3040*r^6 - 12432*r^4 + 18544*r^2 - 18592)^2 * (768*r^8 - 6912*r^6 + 23328*r^4 - 35248*r^2 + 33081)^2 ...
* sqrt(((1/2) - 1)^2 - r^2)^4 * sqrt(((1/2) + 1)^2 - r^2)^2 * r^4 ...
+ (768*r^8 - 768*r^6 + 288*r^4 - 304*r^2 + 69)^4 * sqrt(((1/2) + 1)^2 - r^2)^4 * r^8 ...
- 2 * (768*r^8 - 768*r^6 + 288*r^4 - 304*r^2 + 69)^2 * (768*r^8 - 6912*r^6 + 23328*r^4 - 35248*r^2 + 33081)^2 ...
* sqrt(((1/2) + 1)^2 - r^2)^2 * sqrt(((1/2) - 1)^2 - r^2)^2 * r^8 ...
+ (768*r^8 - 6912*r^6 + 23328*r^4 - 35248*r^2 + 33081)^4 * sqrt(((1/2) - 1)^2 - r^2)^4 * r^8;
disp(simplify(eq))
sol = vpasolve(eq, r)
%Update the condition
positive_solutions = sol(real(sol) > 0 & imag(sol) == 0 );
disp(['q: ', num2str(length(positive_solutions))]);
2 Comments
More Answers (1)
Walter Roberson
on 2 Jan 2024
Your equality is equivalent to a polynomial of degree 20.
MATLAB is not able to find a closed form solution for the roots (which is not surprising -- theory says that degree 4 is the largest degree that can routinely be solved algebraically.) So MATLAB returns a form that "stands in" for the polynomial roots.
You then ask to reduce the solutions to the positive numbers. That requires being able to prove that particular solutions are positive... which is difficult when you cannot express the solutions explicitly.
2 Comments
Walter Roberson
on 2 Jan 2024
syms r;
eq = (3040*r^6 - 12432*r^4 + 18544*r^2 - 18592)^4 * sqrt(((1/2) + 1)^2 - r^2)^4 * sqrt(((1/2) - 1)^2 - r^2)^4 ...
- 2 * (3040*r^6 - 12432*r^4 + 18544*r^2 - 18592)^2 * (768*r^8 - 768*r^6 + 288*r^4 - 304*r^2 + 69)^2 ...
* sqrt(((1/2) - 1)^2 - r^2)^2 * sqrt(((1/2) + 1)^2 - r^2)^4 * r^4 ...
- 2 * (3040*r^6 - 12432*r^4 + 18544*r^2 - 18592)^2 * (768*r^8 - 6912*r^6 + 23328*r^4 - 35248*r^2 + 33081)^2 ...
* sqrt(((1/2) - 1)^2 - r^2)^4 * sqrt(((1/2) + 1)^2 - r^2)^2 * r^4 ...
+ (768*r^8 - 768*r^6 + 288*r^4 - 304*r^2 + 69)^4 * sqrt(((1/2) + 1)^2 - r^2)^4 * r^8 ...
- 2 * (768*r^8 - 768*r^6 + 288*r^4 - 304*r^2 + 69)^2 * (768*r^8 - 6912*r^6 + 23328*r^4 - 35248*r^2 + 33081)^2 ...
* sqrt(((1/2) + 1)^2 - r^2)^2 * sqrt(((1/2) - 1)^2 - r^2)^2 * r^8 ...
+ (768*r^8 - 6912*r^6 + 23328*r^4 - 35248*r^2 + 33081)^4 * sqrt(((1/2) - 1)^2 - r^2)^4 * r^8;
sol = solve(eq, r);
dsol = double(sol);
positive_solutions = sol(imag(dsol)==0 & real(dsol) > 0)
disp(['q: ', num2str(length(positive_solutions))]);
disp(double(positive_solutions))
See Also
Categories
Find more on Special Values in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!