Getting complex solution with Matlab ode45

21 views (last 30 days)
Kaiwei
Kaiwei on 6 Jan 2024
Commented: Kaiwei on 7 Jan 2024
I'm trying to solve such an ODE:
with boundary condition
I have such a problem that if the solution of y would come with complex part such as 1.1462 + 0.0000i. However, if I add an abs in sqrt there will be no longer complex parts, but the solution is not what I desires. Is there anything I can do to avoid this?
My matlab code is
clearvars;
A=-4.32;
B=4;
C=1.2;
D=0.8;
a=0.2778;
odefun_mon_pc1=@(t,y) (t*D*y+A*t+C+sqrt(B*y))/((t*t-t)*D);
tspan2=[a 0.99];
options=odeset('Reltol',1e-10);
[t,y]=ode45(odefun_mon_pc1,tspan2,0.0001,options);
h_pc_mon=plot(t,y,'--blue','linewidth',1);
  10 Comments
Torsten
Torsten on 6 Jan 2024
So you deny the facts ? @Paul's call to "odefun_mon_pc1" clearly shows that your function is decreasing, and as soon as y becomes negative, sqrt(B*y) becomes complex-valued. If a>1, it's another story.
Kaiwei
Kaiwei on 6 Jan 2024
I actually want y(a) to be 0, since I feel it's possible to cause problems in sqrt, I use 0.0001 instead.

Sign in to comment.

Answers (2)

Paul
Paul on 6 Jan 2024
Edited: Paul on 7 Jan 2024
It looks like your differential equation is very sensitive (I mean that loosely)
A=-4.32;
B=4;
C=1.2;
D=0.8;
a=0.2778;
odefun_mon_pc1=@(t,y) (t*D*y+A*t+C+sqrt(B*y))/((t*t-t)*D);
tspan2=[a 0.99];
Here's the initial code:
options=odeset('Reltol',1e-10);
[t,y] = ode45(odefun_mon_pc1,tspan2,0.0001,options);
figure
h_pc_mon=plot(t,y,'--blue','linewidth',1);
Warning: Imaginary parts of complex X and/or Y arguments ignored.
Use the stated boundary condition:
options=odeset('Reltol',1e-10);
[t,y] = ode45(odefun_mon_pc1,tspan2,0*0.0001,options);
figure
h_pc_mon=plot(t,y,'--blue','linewidth',1);
Warning: Imaginary parts of complex X and/or Y arguments ignored.
Use the stated boundary condition with a smaller step size
options=odeset('Reltol',1e-10,'MaxStep',1e-6);
[t,y] = ode45(odefun_mon_pc1,tspan2,0*0.0001,options);
figure
h_pc_mon=plot(t,y,'--blue','linewidth',1);
If you cut tspan down to focus on the what's happening for t < 0.3, you'll probably find some interesting behavior.
I didn't try setting the MaxInitialStep to a small value; that's usually a good idea. And then maybe the MaxStep won't have to be set so small. You'll have to do some more analysis.
  15 Comments
Torsten
Torsten on 7 Jan 2024
Here is the "protocol" of the computation:
format long
main()
y =
0
dy =
1.383508692225195e-15
y =
1.970731270480778e-17
dy =
0.372052035790209
y =
0.005962133873538
dy =
-0.378907739937008
y =
-0.194879796143495
dy =
1.674569751746179 - 4.955806801539233i
y =
-0.607040471461461 + 0.102645099508424i
dy =
1.712248425195752 - 8.853224859229034i
y =
-0.525565056703810 + 0.074205897064859i
dy =
1.938343899800220 - 8.110876389255505i
y =
0.044288699548717 - 0.102168740039767i
dy =
-1.444861094730993 + 2.171921662465315i
y =
6.263417519238702e-18
dy =
0.120660369620546
y =
6.145350310098734e-04
dy =
-0.125149591382752
y =
-0.020269208618011
dy =
0.498156865621621 - 1.708403783043071i
y =
-0.062777574498281 + 0.011246006548785i
dy =
0.341710525171683 - 3.022754778844634i
y =
-0.053589014421031 + 0.007949372524639i
dy =
0.454526384023613 - 2.772586909505056i
y =
0.004922447429041 - 0.011337343018380i
dy =
-0.531195415656363 + 0.741600692506028i
y =
3.131708759619351e-18
dy =
0.060626617111502
y =
1.543886370637157e-04
dy =
-0.063189650213710
y =
-0.005104570386446
dy =
0.246177258146285 - 0.873172402330348i
y =
-0.015792105596448 + 0.002873940766314i
dy =
0.148309912877591 - 1.542930198052416i
y =
-0.013434669782905 + 0.002025248432693i
dy =
0.210303227142975 - 1.416765947698542i
y =
0.001263231849470 - 0.002904158325608i
dy =
-0.276910941487013 + 0.379385731866525i
y =
1.565854379809676e-18
dy =
0.030388541880217
y =
3.869295193076423e-05
dy =
-0.031753422780403
y =
-0.001280923169895
dy =
0.122445174153461 - 0.441614252687739i
y =
-0.003960720409051 + 0.000726759801614i
dy =
0.068571933330364 - 0.779955334290608i
y =
-0.003363612720182 + 0.000511532475800i
dy =
0.101026257547528 - 0.716654601507805i
y =
3.201622476449140e-04 - 7.352049543357601e-04i
dy =
-0.141541735028551 + 0.192062301447560i
y =
7.829271899048378e-19
dy =
0.015213220059255
y =
9.685301696691987e-06
dy =
-0.015916981842596
y =
-3.208360992182738e-04
dy =
0.061072270357478 - 0.222101698910611i
y =
-9.917974122841348e-04 + 1.827551824425714e-04i
dy =
0.032896057998398 - 0.392179726685343i
y =
-8.415374921489713e-04 + 1.285676070526490e-04i
dy =
0.049495488477978 - 0.360481754815441i
y =
8.060322930127133e-05 - 1.849756503688479e-04i
dy =
-0.071577114276770 + 0.096653242372683i
y =
3.914635949524189e-19
dy =
0.007611363809803
y =
2.422838640803803e-06
dy =
-0.007968635430208
y =
-8.028516210107499e-05
dy =
0.030499895984965 - 0.111379303593596i
y =
-2.481534074308239e-04 + 4.582392896680751e-05i
dy =
0.016101230182035 - 0.196650585781433i
y =
-2.104646168027045e-04 + 3.222951792616075e-05i
dy =
0.024495006224752 - 0.180790623032159i
y =
2.022232647710552e-05 - 4.639255219712682e-05i
dy =
-0.035994617795240 + 0.048485982471690i
y =
1.957317974762094e-19
dy =
0.003806871560430
y =
6.058990049396406e-07
dy =
-0.003986862411036
y =
-2.008083243529174e-05
dy =
0.015241057104542 - 0.055772367836485i
y =
-6.206396286788336e-05 + 1.147299785324150e-05i
dy =
0.007963996914436 - 0.098466756436168i
y =
-5.262623037663364e-05 + 8.068461078939240e-06i
dy =
0.012184524947846 - 0.090534149403213i
y =
5.064597100757451e-06 - 1.161683273272731e-05i
dy =
-0.018049396102513 + 0.024283316822590i
y =
9.786589873810472e-20
dy =
0.001903732738183
y =
1.514983830457891e-07
dy =
-0.001994067679724
y =
-5.021400623118931e-06
dy =
0.007618327035272 - 0.027906933817957i
y =
-1.551919344750512e-05 + 2.870383706163192e-06i
dy =
0.003960353947196 - 0.049268897484744i
y =
-1.315781520990902e-05 + 2.018508327617018e-06i
dy =
0.006076543469314 - 0.045301952604281i
y =
1.267281084102568e-06 - 2.906551654664398e-06i
dy =
-0.009037791259566 + 0.012151799069085i
y =
4.893294936905236e-20
dy =
9.519401219394521e-04
y =
3.787753037433204e-08
dy =
-9.971924487971494e-04
y =
-1.255498578340883e-06
dy =
0.003808615795127 - 0.013958659786063i
y =
-3.880196956626868e-06 + 7.178629847183327e-07i
dy =
0.001974767124185 - 0.024643342032173i
y =
-3.289609207000900e-06 + 5.048015998912719e-07i
dy =
0.003034345096395 - 0.022659711175699i
y =
3.169620927279541e-07 - 7.269310580455586e-07i
dy =
-0.004522177345437 + 0.006078440782650i
y =
2.446647468452618e-20
dy =
4.759881345279746e-04
y =
9.469742165442881e-09
dy =
-4.986354259235615e-04
y =
-3.138929353323804e-07
dy =
0.001904171299541 - 0.006980626320959i
y =
-9.700983066989318e-07 + 1.794990823893516e-07i
dy =
0.000986031284435 - 0.012323891944995i
y =
-8.224210217913041e-07 + 1.262222009289804e-07i
dy =
0.001516191227812 - 0.011332037176365i
y =
7.925828660738075e-08 - 1.817693480039817e-07i
dy =
-0.002261909763136 + 0.003039855506458i
y =
1.223323734226309e-20
dy =
2.379983252358120e-04
y =
2.367477897350908e-09
dy =
-2.493271833416031e-04
y =
-7.847542531909032e-08
dy =
0.000952051541917 - 0.003490635298130i
y =
-2.425304338343176e-07 + 4.487891230396562e-08i
dy =
0.000492677613895 - 0.006162498019250i
y =
-2.056073416401360e-07 + 3.155826106954752e-08i
dy =
0.000757850291163 - 0.005666560848646i
y =
1.981679929002379e-08 - 4.544688049533326e-08i
dy =
-0.001131159959216 + 0.001520085829139i
y =
6.116618671131545e-21
dy =
1.190000426484157e-04
y =
5.918738513713144e-10
dy =
-1.246657245091535e-04
y =
-1.961909659116244e-08
dy =
0.000476017249224 - 0.001745396703070i
y =
-6.063324237884449e-08 + 1.122023627255852e-08i
dy =
0.000246254317711 - 0.003081384582084i
y =
-5.140200617536733e-08 + 7.889898484132458e-09i
dy =
0.000378863791010 - 0.002833413567497i
y =
4.954480487493706e-09 - 1.136227712690536e-08i
dy =
-5.656310282254856e-04 + 7.600818660153602e-04i
y =
3.058309335565772e-21
dy =
5.950011085744896e-05
y =
1.479686855003989e-10
dy =
-6.233322929042293e-05
y =
-4.904792266231969e-09
dy =
2.380064948384422e-04 - 8.727170572473672e-04i
y =
-1.515835507313348e-08 + 2.805119192727366e-09i
dy =
0.000123106047744 - 0.001540724436017i
y =
-1.285049104964707e-08 + 1.972514243038194e-09i
dy =
0.000189416536322 - 0.001416738331473i
y =
1.238655965218389e-09 - 2.840635008699860e-09i
dy =
-2.828281097695261e-04 + 3.800502607453933e-04i
y =
1.529154667782886e-21
dy =
2.974998554798552e-05
y =
3.699208448343836e-11
dy =
-3.116658887906363e-05
y =
-1.226196118504894e-09
dy =
1.190027150621082e-04 - 4.363624557087092e-04i
y =
-3.789582035860693e-09 + 7.012861094722451e-10i
dy =
6.154775382903659e-05 - 7.703690152113238e-04i
y =
-3.212610192462292e-09 + 4.931327934659746e-10i
dy =
9.470441337666793e-05 - 7.083758204797021e-04i
y =
3.096687391795505e-10 - 7.101655877030202e-10i
dy =
-1.414170847732855e-04 + 1.900271712024422e-04i
y =
1.533642674400130e-10 - 5.001337046489064e-10i
dy =
-5.068080282980875e-05 + 1.694374462745171e-04i
y =
1.880364294813022e-10 - 4.207196862819207e-10i
dy =
-3.107853169619963e-05 + 1.455349260455315e-04i
y =
-1.952352244550604e-11 - 3.194770716137021e-10i
dy =
1.149906276898515e-04 + 1.623790275170763e-04i
y =
-6.219946268655014e-10 - 8.280704800216605e-10i
dy =
1.017594622116897e-04 + 3.587518707200944e-04i
y =
-4.083600624752463e-10 - 9.234447260919244e-10i
dy =
8.142172857915304e-05 + 3.318150495992067e-04i
y =
4.526360649636436e-10 - 6.792365410744312e-11i
dy =
3.164068063595222e-05 + 1.983660212809084e-05i
y =
4.968760198415248e-10 - 4.018814509060903e-11i
dy =
5.713509847636958e-05 + 1.122409970957442e-05i
y =
5.590980385847979e-10 - 3.986762785910936e-11i
dy =
5.911254087223089e-05 + 1.049861967195837e-05i
y =
6.470633371323969e-10 + 3.568921347722917e-11i
dy =
1.309304882661696e-04 - 8.738295526763915e-06i
y =
2.672054766348865e-10 + 1.703655906023332e-10i
dy =
2.518016286169323e-04 - 6.211254990232522e-05i
y =
2.392767173857214e-10 + 2.381306722973853e-10i
dy =
2.740338440321297e-04 - 8.736202474152284e-05i
y =
9.377491449023052e-10 - 2.077368415140676e-12i
dy =
1.040699535173227e-04 + 4.226658719070449e-07i
y =
1.131931268053030e-09 - 1.288724300135851e-12i
dy =
1.166401436486308e-04 + 2.386578249497965e-07i
y =
1.255408614923137e-09 - 1.280656449835115e-12i
dy =
1.194757525773124e-04 + 2.251982787891306e-07i
y =
1.787689803370570e-09 + 9.359270766798996e-13i
dy =
1.596777182009342e-04 - 1.379167846705754e-07i
y =
1.701860482045778e-09 + 4.758676962501275e-12i
dy =
1.948005317660836e-04 - 7.186941903966038e-07i
y =
1.840087150086763e-09 + 5.381890287541470e-12i
dy =
2.022318289762797e-04 - 7.816901731783460e-07i
y =
2.158025114786880e-09 - 4.052817816603760e-13i
dy =
1.578926058343788e-04 + 5.435614502240691e-08i
y =
2.716234230729141e-09 - 2.131125822311487e-13i
dy =
1.824811205844441e-04 + 2.547665723461021e-08i
y =
3.093134531790896e-09 - 2.318901853373331e-13i
dy =
1.864641755727737e-04 + 2.597757228921311e-08i
y =
4.563930095362158e-09 + 4.856333788727726e-13i
dy =
2.755515348996356e-04 - 4.478651681369425e-08i
y =
3.955139642687552e-09 + 1.950497105815681e-12i
dy =
3.759932983358271e-04 - 1.932282741881028e-07i
y =
4.296045329305949e-09 + 2.288631616413395e-12i
dy =
3.957796700454491e-04 - 2.175434973018268e-07i
y =
5.837821898554267e-09 - 2.927958145685065e-14i
dy =
2.604411132178439e-04 + 2.387509717550282e-09i
y =
7.015789542074857e-09 - 1.848094386420300e-14i
dy =
2.905275378158513e-04 + 1.374636703140663e-09i
y =
7.757863398387546e-09 - 1.823546992797686e-14i
dy =
2.975822711275659e-04 + 1.289870770004645e-09i
y =
1.099599209508535e-08 + 1.117125159425661e-14i
dy =
3.927756622486992e-04 - 6.637058943682332e-10i
y =
1.056380081721246e-08 + 6.056085475219572e-14i
dy =
4.728093571104030e-04 - 3.670885270199564e-09i
y =
1.140860157977535e-08 + 6.830817900799865e-14i
dy =
4.902099993699877e-04 - 3.984220730044149e-09i
y =
1.318556707868458e-08 - 6.062471291534953e-15i
dy =
3.903137586007077e-04 + 3.289182360150243e-10i
y =
1.558039589650263e-08 - 4.044343944093738e-15i
dy =
4.309227854862468e-04 + 2.018559549034899e-10i
y =
1.705811845217644e-08 - 3.912341241138842e-15i
dy =
4.413990048913700e-04 + 1.866171279406365e-10i
y =
2.368613179414105e-08 + 1.040800248216085e-15i
dy =
5.639246147271665e-04 - 4.212967926019293e-11i
y =
2.322867364824396e-08 + 8.535940083533973e-15i
dy =
6.559142672277084e-04 - 3.489026130972983e-10i
y =
2.497002453165162e-08 + 9.599041640615555e-15i
dy =
6.777506602729647e-04 - 3.784257895407139e-10i
y =
2.785922920630100e-08 - 1.481942161835148e-15i
dy =
5.669655527584294e-04 + 5.531079475239476e-11i
y =
3.228084084586639e-08 - 1.050588170960497e-15i
dy =
6.178729961737999e-04 + 3.642646390086110e-11i
y =
3.493828678541850e-08 - 1.000594211783202e-15i
dy =
6.324836041593436e-04 + 3.334732956591502e-11i
y =
4.721844953293655e-08 - 5.251995556896841e-17i
dy =
7.786078530353374e-04 + 1.505589432703325e-12i
y =
4.718785405821270e-08 + 1.171429287270277e-15i
dy =
8.727484352702047e-04 - 3.359198708562287e-11i
y =
5.040295304993534e-08 + 1.332711163108839e-15i
dy =
8.986491215644930e-04 - 3.697765051349517e-11i
y =
5.433764453625484e-08 - 4.295297449077720e-16i
dy =
7.915276587965475e-04 + 1.147823042814519e-11i
y =
6.203073741874014e-08 - 3.179694073390918e-16i
dy =
8.542650061542439e-04 + 7.952545519226411e-12i
y =
6.656326717900159e-08 - 3.007398170777042e-16i
dy =
8.736576902279902e-04 + 7.260961045302960e-12i
y =
8.791881820770416e-08 - 7.232583959546645e-17i
dy =
0.001047622226649 + 0.000000000001519i
y =
8.876196973263427e-08 + 1.806642602244033e-16i
dy =
0.001146168961779 - 0.000000000003777i
y =
9.430360174700384e-08 + 2.141514210816973e-16i
dy =
0.001177334867269 - 0.000000000004344i
y =
9.959779652033275e-08 - 1.405718604017924e-16i
dy =
0.001071419768284 + 0.000000000002774i
y =
1.122733652517125e-07 - 1.077491311612818e-16i
dy =
0.001147021989341 + 0.000000000002003i
y =
1.196173740915352e-07 - 1.016058253473297e-16i
dy =
0.001171806627979 + 0.000000000001830i
y =
1.547177914918584e-07 - 3.757729233055981e-17i
dy =
0.001375957686682 + 0.000000000000595i
y =
1.571675428903223e-07 + 2.311747542081756e-17i
dy =
0.001478761577743 - 0.000000000000363i
y =
1.661791717131384e-07 + 3.169210026289701e-17i
dy =
0.001515962106241 - 0.000000000000484i
y =
1.730471056647400e-07 - 5.090057355869628e-17i
dy =
0.001412098247470 + 0.000000000000762i
y =
1.953279764305383e-07 - 3.887643455633899e-17i
dy =
0.001513044533853 + 0.000000000000548i
y =
2.082602967342317e-07 - 3.666723903467921e-17i
dy =
0.001545936870256 + 0.000000000000500i
y =
2.699813305988067e-07 - 1.310574319555488e-17i
dy =
0.001819214849423 + 0.000000000000157i
y =
2.741036512867933e-07 + 9.623451643950829e-18i
dy =
0.001958598027056 - 0.000000000000114i
y =
2.899697089998235e-07 + 1.280263918685518e-17i
dy =
0.002008286284741 - 0.000000000000148i
y =
3.023655456484799e-07 - 1.823743692445759e-17i
dy =
0.001866441392225 + 0.000000000000207i
y =
3.412454194595944e-07 - 1.393522733327800e-17i
dy =
0.001999670340534 + 0.000000000000149i
y =
3.638075627788081e-07 - 1.314305724203303e-17i
dy =
0.002043112235569 + 0.000000000000136i
y =
4.715059148129636e-07 - 4.717428047450815e-18i
dy =
0.002403652942016 + 0.000000000000043i
y =
4.787372215848366e-07 + 3.393865088988920e-18i
dy =
0.002587260368816 - 0.000000000000031i
y =
5.064182930011868e-07 + 4.529626307766129e-18i
dy =
0.002652826793885 - 0.000000000000040i
y =
5.279820937383298e-07 - 6.542876330080363e-18i
dy =
0.002466137501859 + 0.000000000000056i
y =
5.958886160960141e-07 - 4.999208393492945e-18i
dy =
0.002642200756944 + 0.000000000000040i
y =
6.352958812704481e-07 - 4.715053994476078e-18i
dy =
0.002699604997647 + 0.000000000000037i
y =
8.233994505256927e-07 - 1.691714331689609e-18i
dy =
0.003176054001929 + 0.000000000000012i
y =
8.360232915735843e-07 + 1.219521057971129e-18i
dy =
0.003418713120302 - 0.000000000000008i
y =
8.843712101250965e-07 + 1.627068266172843e-18i
dy =
0.003505349381809 - 0.000000000000011i
y =
9.220443580594382e-07 - 2.347140589559471e-18i
dy =
0.003258602372202 + 0.000000000000015i
y =
1.040644364069050e-06 - 1.793398284713334e-18i
dy =
0.003491232031364 + 0.000000000000011i
y =
1.109469497881838e-06 - 1.691471214669743e-18i
dy =
0.003567079947758 + 0.000000000000010i
y =
1.437994953083668e-06 - 6.069599909703393e-19i
dy =
0.004196561063946 + 0.000000000000003i
y =
1.460046915726589e-06 + 4.373312977636748e-19i
dy =
0.004517127973924 - 0.000000000000002i
y =
1.544487017101725e-06 + 5.835057252878616e-19i
dy =
0.004631580554002 - 0.000000000000003i
y =
1.610275472384083e-06 - 8.420700904924294e-19i
dy =
0.004305630936470 + 0.000000000000004i
y =
1.817431951411863e-06 - 6.434118196959995e-19i
dy =
0.004612999065390 + 0.000000000000003i
y =
1.937647116576954e-06 - 6.068485461531244e-19i
dy =
0.004713214812273 + 0.000000000000003i
y =
2.511474781323582e-06 - 2.177776356562922e-19i
dy =
0.005544863156345 + 0.000000000000001i
y =
2.549998428965226e-06 + 1.568762614890002e-19i
dy =
0.005968340240279 - 0.000000000000001i
y =
2.697487892663802e-06 + 2.093090763254276e-19i
dy =
0.006119531775146 - 0.000000000000001i
y =
2.812386649625631e-06 - 3.021327816731008e-19i
dy =
0.005688967798223 + 0.000000000000001i
y =
3.174261656700916e-06 - 2.308570419999297e-19i
dy =
0.006095072993890 + 0.000000000000001i
y =
3.384260536834194e-06 - 2.177403386224525e-19i
dy =
0.006227481041714 + 0.000000000000001i
y =
4.386657410815355e-06 - 7.814919979577551e-20i
dy =
0.007326160030987 + 0.000000000000000i
y =
4.453967413350881e-06 + 5.627455492680053e-20i
dy =
0.007885530390488 - 0.000000000000000i
y =
4.711610672109094e-06 + 7.508281576759433e-20i
dy =
0.008085234113719 - 0.000000000000000i
y =
4.912292977196762e-06 - 1.084180932055545e-19i
dy =
0.007516544984755 + 0.000000000000000i
y =
5.544530479019582e-06 - 8.284244115666805e-20i
dy =
0.008053083490775 + 0.000000000000000i
y =
5.911420193989197e-06 - 7.813660966718626e-20i
dy =
0.008228017754643 + 0.000000000000000i
y =
7.662713564511907e-06 - 2.804845374443637e-20i
dy =
0.009679357709568 + 0.000000000000000i
y =
7.780344660347781e-06 + 2.018801115135131e-20i
dy =
0.010418140949827 - 0.000000000000000i
y =
8.230474053515427e-06 + 2.693509270000566e-20i
dy =
0.010681888932555 - 0.000000000000000i
y =
8.581018899156376e-06 - 3.891140999419384e-20i
dy =
0.009930871202460 + 0.000000000000000i
y =
9.685816631900941e-06 - 2.973279742852842e-20i
dy =
0.010639697827190 + 0.000000000000000i
y =
1.032692864195810e-05 - 2.804433933174525e-20i
dy =
0.010870803960216 + 0.000000000000000i
y =
1.338718723286769e-05 - 1.006907958998351e-20i
dy =
0.012787812263328 + 0.000000000000000i
y =
1.359281602430164e-05 + 7.242827921072521e-21i
dy =
0.013763399006427 - 0.000000000000000i
y =
1.437938297672545e-05 + 9.663365312243331e-21i
dy =
0.014111671050880 - 0.000000000000000i
y =
1.499177727477740e-05 - 1.396837304529752e-20i
dy =
0.013120054935463 + 0.000000000000000i
y =
1.692281785572957e-05 - 1.067369271637113e-20i
dy =
0.014056426505277 + 0.000000000000000i
y =
1.804338269043093e-05 - 1.006779416641831e-20i
dy =
0.014361719008736 + 0.000000000000000i
y =
2.339225605974263e-05 - 3.615738043200563e-21i
dy =
0.016893472159108 + 0.000000000000000i
y =
2.375184148787283e-05 + 2.598766278751253e-21i
dy =
0.018181497699951 - 0.000000000000000i
y =
2.512663837209126e-05 + 3.467217948367936e-21i
dy =
0.018641279084035 - 0.000000000000000i
y =
2.619664941617839e-05 - 5.015768267447482e-21i
dy =
0.017332309147307 + 0.000000000000000i
y =
2.957293304506768e-05 - 3.832829456684031e-21i
dy =
0.018569153612629 + 0.000000000000000i
y =
3.153212529455772e-05 - 3.615367661846114e-21i
dy =
0.018972407021990 + 0.000000000000000i
y =
4.088411122686798e-05 - 1.298880477094218e-21i
dy =
0.022315455844949 + 0.000000000000000i
y =
4.151321881441775e-05 + 9.325791450248254e-22i
dy =
0.024015517467022 - 0.000000000000000i
y =
4.391690634912977e-05 + 1.244202699256956e-21i
dy =
0.024622333594720 - 0.000000000000000i
y =
4.578688348550062e-05 - 1.801729773489379e-21i
dy =
0.022895002929960 + 0.000000000000000i
y =
5.169253329032936e-05 - 1.376856988334038e-21i
dy =
0.024528530825700 + 0.000000000000000i
y =
5.511938845140728e-05 - 1.298790842829217e-21i
dy =
0.025061107855570 + 0.000000000000000i
y =
7.147717213282131e-05 - 4.668272522585244e-22i
dy =
0.029474408911594 + 0.000000000000000i
y =
7.257849533557888e-05 + 3.347217951049519e-22i
dy =
0.031717515755960 - 0.000000000000000i
y =
7.678281208731770e-05 + 4.465581244454974e-22i
dy =
0.032518080166005 - 0.000000000000000i
y =
8.005172008190541e-05 - 6.475168188291440e-22i
dy =
0.030239635274729 + 0.000000000000000i
y =
9.038723073271329e-05 - 4.948487331738420e-22i
dy =
0.032396701149882 + 0.000000000000000i
y =
9.638439998011620e-05 - 4.668157204994411e-22i
dy =
0.033099949982845 + 0.000000000000000i
y =
1.250115117491645e-04 - 1.678886259790811e-22i
dy =
0.038924352602890 + 0.000000000000000i
y =
1.269410416996646e-04 + 1.201683118035633e-22i
dy =
0.041882591851017 - 0.000000000000000i
y =
1.342987647317007e-04 + 1.603129006064665e-22i
dy =
0.042938236134581 - 0.000000000000000i
y =
1.400151617819276e-04 - 2.328540284838309e-22i
dy =
0.039934480394832 + 0.000000000000000i
y =
1.581160674742267e-04 - 1.779646755521442e-22i
dy =
0.042782213008746 + 0.000000000000000i
y =
1.686186453096881e-04 - 1.678943361430487e-22i
dy =
0.043710601382799 + 0.000000000000000i
y =
2.187524227348342e-04 - 6.042877624015380e-23i
dy =
0.051394173551753 + 0.000000000000000i
y =
2.221364683368635e-04 + 4.315607398676881e-23i
dy =
0.055293184662989 - 0.000000000000000i
y =
2.350215797577061e-04 + 5.757041652441292e-23i
dy =
0.056684273885666 - 0.000000000000000i
y =
2.450224806973521e-04 - 8.380424159287387e-23i
dy =
0.052727096699245 + 0.000000000000000i
y =
2.767516101623589e-04 - 6.405494065913138e-23i
dy =
0.056485446065454 + 0.000000000000000i
y =
2.951605080027951e-04 - 6.043552803015446e-23i
dy =
0.057710640321346 + 0.000000000000000i
y =
3.830357646250116e-04 - 2.177315546310597e-23i
dy =
0.067841394575844 + 0.000000000000000i
y =
3.889786139576488e-04 + 1.550575823898543e-23i
dy =
0.072976358998487 - 0.000000000000000i
y =
4.115631435579221e-04 + 2.068338916851002e-23i
dy =
0.074807930947693 - 0.000000000000000i
y =
4.290699324557458e-04 - 3.019218357789487e-23i
dy =
0.069599380546142 + 0.000000000000000i
y =
4.847511715669524e-04 - 2.307954930901419e-23i
dy =
0.074557366315225 + 0.000000000000000i
y =
5.170541173325157e-04 - 2.177782167902278e-23i
dy =
0.076173504540351 + 0.000000000000000i
y =
6.712548933613435e-04 - 7.855437525118896e-24i
dy =
0.089521352431685 + 0.000000000000000i
y =
6.817088354575994e-04 + 5.574645876676866e-24i
dy =
0.096277322724043 - 0.000000000000000i
y =
7.213374620663292e-04 + 7.435441004473227e-24i
dy =
0.098686218323827 - 0.000000000000000i
y =
7.520056212654031e-04 - 1.089144737016721e-23i
dy =
0.091838316474623 + 0.000000000000000i
y =
8.498582541463439e-04 - 8.326753280321716e-24i
dy =
0.098374873696607 + 0.000000000000000i
y =
9.066197724779052e-04 - 7.858177912458822e-24i
dy =
0.100505311044593 + 0.000000000000000i
y =
0.001177580142772 - 0.000000000000000i
dy =
0.118075253690363 + 0.000000000000000i
y =
0.001196007857991 + 0.000000000000000i
dy =
0.126952759704512 - 0.000000000000000i
y =
0.001265637085649 + 0.000000000000000i
dy =
0.130116528113751 - 0.000000000000000i
y =
0.001319408650183 - 0.000000000000000i
dy =
0.121125871580884 + 0.000000000000000i
y =
0.001491666146368 - 0.000000000000000i
dy =
0.129736197558780 + 0.000000000000000i
y =
0.001591570583516 - 0.000000000000000i
dy =
0.132541988692257 + 0.000000000000000i
y =
0.002068491337367 - 0.000000000000000i
dy =
0.155640482876983 + 0.000000000000000i
y =
0.002101057449425 + 0.000000000000000i
dy =
0.167287482951030 - 0.000000000000000i
y =
0.002223595345533 + 0.000000000000000i
dy =
0.171435343327616 - 0.000000000000000i
y =
0.002317972993879 - 0.000000000000000i
dy =
0.159651261080661 + 0.000000000000000i
y =
0.002621812289381 - 0.000000000000000i
dy =
0.170979288568378 + 0.000000000000000i
y =
0.002797985659598 - 0.000000000000000i
dy =
0.174669548963467 + 0.000000000000000i
y =
0.003639021779244 - 0.000000000000000i
dy =
0.204985366818227 + 0.000000000000000i
y =
0.003696745605829 + 0.000000000000000i
dy =
0.220236856954924 - 0.000000000000000i
y =
0.003912785907145 + 0.000000000000000i
dy =
0.225662991101011 - 0.000000000000000i
y =
0.004078623143704 - 0.000000000000000i
dy =
0.210247360474903 + 0.000000000000000i
y =
0.004615695605331 - 0.000000000000000i
dy =
0.225124014416973 + 0.000000000000000i
y =
0.004926984198301 - 0.000000000000000i
dy =
0.229967920849140 + 0.000000000000000i
y =
0.006413109472827 - 0.000000000000000i
dy =
0.269667081575811 + 0.000000000000000i
y =
0.006515763154695 + 0.000000000000000i
dy =
0.289594356573050 - 0.000000000000000i
y =
0.006897355033774 + 0.000000000000000i
dy =
0.296673861459230 - 0.000000000000000i
y =
0.007189077325349 - 0.000000000000000i
dy =
0.276548914532650 + 0.000000000000000i
y =
0.008140256575540 - 0.000000000000000i
dy =
0.296033296848327 + 0.000000000000000i
y =
0.008691238948847 - 0.000000000000000i
dy =
0.302372537902084 + 0.000000000000000i
y =
0.011321843829659 - 0.000000000000000i
dy =
0.354203066226909 + 0.000000000000000i
y =
0.011504990932320 + 0.000000000000000i
dy =
0.380176651139166 - 0.000000000000000i
y =
0.012179984715132 + 0.000000000000000i
dy =
0.389384837531925 - 0.000000000000000i
y =
0.012693503788658 - 0.000000000000000i
dy =
0.363160607085906 + 0.000000000000000i
y =
0.014379788962956 - 0.000000000000000i
dy =
0.388575524387946 + 0.000000000000000i
y =
0.015355693466165 - 0.000000000000000i
dy =
0.396833888968967 + 0.000000000000000i
y =
0.020015462693770 - 0.000000000000000i
dy =
0.464228902743291 + 0.000000000000000i
y =
0.020342990971860 + 0.000000000000000i
dy =
0.498004979493091 - 0.000000000000000i
y =
0.021537254388306 + 0.000000000000000i
dy =
0.509942096782366 - 0.000000000000000i
y =
0.022440804377068 - 0.000000000000000i
dy =
0.475803101020528 + 0.000000000000000i
y =
0.025426219081275 - 0.000000000000000i
dy =
0.508744723116854 + 0.000000000000000i
y =
0.027151454243986 - 0.000000000000000i
dy =
0.519427201039156 + 0.000000000000000i
y =
0.035390327589322 - 0.000000000000000i
dy =
0.606583696514160 + 0.000000000000000i
y =
0.035975929218288 + 0.000000000000000i
dy =
0.650440094194655 - 0.000000000000000i
y =
0.038083309311274 + 0.000000000000000i
dy =
0.665868204284890 - 0.000000000000000i
y =
0.039668471200948 - 0.000000000000000i
dy =
0.621368205592725 + 0.000000000000000i
y =
0.044920057808670 - 0.000000000000000i
dy =
0.663650245951446 + 0.000000000000000i
y =
0.047947873245718 - 0.000000000000000i
dy =
0.677316421798375 + 0.000000000000000i
y =
0.062410534698806 - 0.000000000000000i
dy =
0.789219363312337 + 0.000000000000000i
y =
0.063451166861891 + 0.000000000000000i
dy =
0.846213174169114 - 0.000000000000000i
y =
0.067138174873697 + 0.000000000000000i
dy =
0.866126765806761 - 0.000000000000000i
y =
0.069897797453880 - 0.000000000000000i
dy =
0.807759666054246 + 0.000000000000000i
y =
0.078989966966805 - 0.000000000000000i
dy =
0.861233811848343 + 0.000000000000000i
y =
0.084213196820837 - 0.000000000000000i
dy =
0.878420479327049 + 0.000000000000000i
y =
0.109170624124542 - 0.000000000000000i
dy =
1.020816673464679 + 0.000000000000000i
y =
0.110986149805521 + 0.000000000000000i
dy =
1.095371041804911 - 0.000000000000000i
y =
0.117313209649450 + 0.000000000000000i
dy =
1.121172052833214 - 0.000000000000000i
y =
0.122043346039916 - 0.000000000000000i
dy =
1.043359949332595 + 0.000000000000000i
y =
0.136905428873742 - 0.000000000000000i
dy =
1.107751035939996 + 0.000000000000000i
y =
0.145368337453539 - 0.000000000000000i
dy =
1.128527184093873 + 0.000000000000000i
y =
0.185937613825935 - 0.000000000000000i
dy =
1.301938231632023 + 0.000000000000000i
y =
0.189145859760665 + 0.000000000000000i
dy =
1.395074123938578 - 0.000000000000000i
y =
0.199318677933949 + 0.000000000000000i
dy =
1.427901740275793 - 0.000000000000000i
y =
0.206579693068181 - 0.000000000000000i
dy =
1.328785162137657 + 0.000000000000000i
y =
0.225507499488853 - 0.000000000000000i
dy =
1.390262314231399 + 0.000000000000000i
y =
0.235956574061491 - 0.000000000000000i
dy =
1.411882054709986 + 0.000000000000000i
y =
0.286987377386788 - 0.000000000000000i
dy =
1.574416832359001 + 0.000000000000000i
y =
0.292978367156633 - 0.000000000000000i
dy =
1.648800146450195 + 0.000000000000000i
y =
0.305463776512641 - 0.000000000000000i
dy =
1.681251656236709 + 0.000000000000000i
y =
0.311206766591890 - 0.000000000000000i
dy =
1.609012152413721 + 0.000000000000000i
y =
0.334126250807384 - 0.000000000000000i
dy =
1.670269479000037 + 0.000000000000000i
y =
0.346567641573676 - 0.000000000000000i
dy =
1.692490033772320 + 0.000000000000000i
y =
0.407736092408705 - 0.000000000000000i
dy =
1.855883799010483 + 0.000000000000000i
y =
0.415768640369989 - 0.000000000000000i
dy =
1.928155671547469 + 0.000000000000000i
y =
0.430500904022383 - 0.000000000000000i
dy =
1.962364248708054 + 0.000000000000000i
y =
0.435890183975403 - 0.000000000000000i
dy =
1.893608124432500 + 0.000000000000000i
y =
0.462863579703430 - 0.000000000000000i
dy =
1.957400652059764 + 0.000000000000000i
y =
0.477372552822671 - 0.000000000000000i
dy =
1.980398427611395 + 0.000000000000000i
y =
0.548799874983569 - 0.000000000000000i
dy =
2.156051882715046 + 0.000000000000000i
y =
0.558370541792580 - 0.000000000000000i
dy =
2.240384606364275 + 0.000000000000000i
y =
0.575383094678526 - 0.000000000000000i
dy =
2.279717664030780 + 0.000000000000000i
y =
0.581342256470338 - 0.000000000000000i
dy =
2.194294047260958 + 0.000000000000000i
y =
0.612598756121322 - 0.000000000000000i
dy =
2.264548340043944 + 0.000000000000000i
y =
0.629352830988661 - 0.000000000000000i
dy =
2.288547498367116 + 0.000000000000000i
y =
0.711556130788430 - 0.000000000000000i
dy =
2.497009384422289 + 0.000000000000000i
y =
0.721909172436788 - 0.000000000000000i
dy =
2.624561760756301 + 0.000000000000000i
y =
0.741205965780401 - 0.000000000000000i
dy =
2.680335724079038 + 0.000000000000000i
y =
0.749331025942823 - 0.000000000000000i
dy =
2.529212054066199 + 0.000000000000000i
y =
0.785358246535188 - 0.000000000000000i
dy =
2.613933955875900 + 0.000000000000000i
y =
0.804729525307872 - 0.000000000000000i
dy =
2.638131409299489 + 0.000000000000000i
y =
0.898494814264489 - 0.000000000000000i
dy =
2.952181156160045 + 0.000000000000000i
y =
0.906922344882561 + 0.000000000000000i
dy =
3.288820829732756 - 0.000000000000000i
y =
0.927235110451703 + 0.000000000000000i
dy =
3.468027514816661 - 0.000000000000000i
y =
0.943879756234952 - 0.000000000000000i
dy =
2.926187983113604 + 0.000000000000000i
y =
0.981083739149486 - 0.000000000000000i
dy =
3.040157641411843 + 0.000000000000000i
y =
1.001315885914664 - 0.000000000000000i
dy =
3.052896241084051 + 0.000000000000000i
y =
1.094286960361290 + 0.000000000000000i
dy =
4.176378672346862 - 0.000000000000000i
y =
1.081228260216912 + 0.000000000000000i
dy =
8.676566775219545 - 0.000000000000000i
y =
1.045836017143651 + 0.000000000000000i
dy =
25.653458231737751 - 0.000000000000000i
y =
1.256612236625872 - 0.000000000000000i
dy =
-20.253943508377660 + 0.000000000000000i
y =
0.956794372763178 - 0.000000000000000i
dy =
2.959694562493763 + 0.000000000000000i
y =
0.963418046006117 - 0.000000000000000i
dy =
2.972775930415163 + 0.000000000000000i
y =
0.996433157601662 - 0.000000000000000i
dy =
3.064880409889199 + 0.000000000000000i
y =
1.001912707466349 - 0.000000000000000i
dy =
3.103140002326774 + 0.000000000000000i
y =
1.009439108431380 - 0.000000000000000i
dy =
3.125040007225063 + 0.000000000000000i
y =
1.010223046653542 - 0.000000000000000i
dy =
3.089857307674118 + 0.000000000000000i
y =
1.023860011361834 - 0.000000000000000i
dy =
3.129277314758268 + 0.000000000000000i
y =
1.030874219712640 - 0.000000000000000i
dy =
3.142753813020164 + 0.000000000000000i
y =
1.065673644442202 - 0.000000000000000i
dy =
3.266424403486700 + 0.000000000000000i
y =
1.071077676673559 - 0.000000000000000i
dy =
3.354563130607045 + 0.000000000000000i
y =
1.078933237120034 - 0.000000000000000i
dy =
3.397961639318861 + 0.000000000000000i
y =
1.080476188169096 - 0.000000000000000i
dy =
3.280575897194256 + 0.000000000000000i
y =
1.093228523438183 - 0.000000000000000i
dy =
3.325774388342657 + 0.000000000000000i
y =
1.099802349844296 - 0.000000000000000i
dy =
3.336664983199894 + 0.000000000000000i
y =
1.132081962200902 + 0.000000000000000i
dy =
3.553649773565003 - 0.000000000000000i
y =
1.136131521329597 + 0.000000000000000i
dy =
3.936566663465324 - 0.000000000000000i
y =
1.142487042185821 + 0.000000000000000i
dy =
4.319009191872722 - 0.000000000000000i
y =
1.146715761062576 - 0.000000000000000i
dy =
3.397072800615574 + 0.000000000000000i
function main
A=-4.32;
B=4;
C=1.2;
D=0.8;
a=5/18;
%odefun_mon_pc1=@(t,y) (t*D*y+A*t+C+sqrt(B*y))/((t*t-t)*D);
tspan2=[a 0.99];
options=odeset('AbsTol',1e-10);
[t,y]=ode45(@odefun_mon_pc1,tspan2,0,options);
function dy = odefun_mon_pc1(t,y)
y
dy = (t*D*y+A*t+C+sqrt(B*y))/((t*t-t)*D)
end
end
Paul
Paul on 7 Jan 2024
Yes, I thought we already established that original code eventually leads to an integration step where y becomes negative and dy becomes complex valued, at which point y will have a non-zero imaginary component. So I'm still not sure what the concern is with the original code.
Maybe you're just referring to the display of the output in the Matlab window, which depends on the format of the output display and how Matlab diplays 0 values (for either real or imaginary parts) of complex-valued arrays.
Consider the real array
x = [0;eps]
x = 2×1
1.0e-15 * 0 0.2220
Notice that with the defaut formating the first element is displayed as "0", which indicates that it's exactly zero ( and multiplied by 1e-15)
But, with a complex array
y = [0; 0 + 1i*eps; eps]
y =
1.0e-15 * 0.0000 + 0.0000i 0.0000 + 0.2220i 0.2220 + 0.0000i
Ther real and imaginary parts of elements where those parts are exactly zero are displayed with "0.0000".
But if we change format, we see those parts are, in fact, exactly zero
format long e
y
y =
0.000000000000000e+00 + 0.000000000000000e+00i 0.000000000000000e+00 + 2.220446049250313e-16i 2.220446049250313e-16 + 0.000000000000000e+00i

Sign in to comment.


Sam Chak
Sam Chak on 7 Jan 2024
Edited: Sam Chak on 7 Jan 2024
As noted by other users, the complex-valued solution is caused by the square root term 'sqrt(B*y)' when the output y is negative. In theory, the integration will yield a negative output y when y-prime () is negative. However, the output y vector in the numerical solution does not have a negative real part. Thus, in a human sense, the argument in the square root term should remain positive, as you would expect a monotonically increasing pattern in the output.
Here, using the conventional Runge-Kutta 4th-order (RK4) solver, we can examine what really happens to the initial step when the step size is very small. The solution of RK4 consists of 4 terms, , , , and . The result below shows that becomes complex-valued because become negative.
format long g
%% Kaiwei's model
% Parameters
A = -4.32;
B = 4;
C = 1.2;
D = 0.8;
a = 5/18; % 0.277777777777777777777777777777777
% Ordinary Differential Equations
odefcn = @(t, y) (t*D*y + A*t + C + sqrt(B*y))/(D*(t.^2 - t));
% Simulation time span
tStart = a; % 5/18
h = 0.00000013/18; % a very small step size
tEnd = a + h; % check what happen to the initial step
% tEnd = 1 - 0.0013/18; % singularity occurs at 18/18 = 1
t = tStart:h:tEnd;
% Initial value
y0 = 0;
% Call RK4 Solver
yRK4 = RK4Solver(odefcn, t, y0);
k1 =
1.38350869222519e-15
k2 =
9.71721452549591e-08
k3 =
-1.36233392341977e-07
k4 =
1.94399999139241e-07 - 3.90884873194043e-07i
y =
0 + 0i 1.39963664796411e-16 - 4.70509568735031e-16i
% Plotting the solutions
plot(t, yRK4, '-o')
Warning: Imaginary parts of complex X and/or Y arguments ignored.
grid on
xlabel('\alpha')
ylabel('U')
%% Runge-Kutta 4th-order Solver
function y = RK4Solver(f, x, y0)
y(:, 1) = y0; % initial condition
h = x(2) - x(1); % step size
n = length(x); % number of steps
for j = 1 : n-1
k1 = f(x(j), y(:, j))
k2 = f(x(j) + h/2, y(:, j) + h/2*k1)
k3 = f(x(j) + h/2, y(:, j) + h/2*k2)
k4 = f(x(j) + h, y(:, j) + h*k3)
y(:, j+1) = y(:, j) + h/6.0*(k1 + 2*k2 + 2*k3 + k4)
end
end
  3 Comments
Sam Chak
Sam Chak on 7 Jan 2024
An implicit ODE doesn't look like yours. Essentially, as @Torsten explained, once the complex-valued solution appears in y, the imaginary part 'cannot be removed'. The values of the imaginary part do not contribute significantly because they are very, very small. You can evaluate the values of the imaginary part below:
By the way, just out of curiosity, what physical phenomenon does your differential equation describe?
format long g
%% Kaiwei's model
% Parameters
A = -4.32;
B = 4;
C = 1.2;
D = 0.8;
a = 5/18; % 0.277777777777777777777777777777777
% Ordinary Differential Equations
odefun = @(t, y) (t*D*y + A*t + C + sqrt(B*y))/(D*(t.^2 - t));
% Simulation time span
tStart = a; % 5/18
h = 0.13/18; % a very small step size
tEnd = 1 - 0.13/18; % singularity occurs at 18/18 = 1
t = tStart:h:tEnd;
% Call ode45 solver
tspan = a:0.13/18:(1 - 0.13/18);
y0 = 0;
options = odeset('Reltol', 1e-10, 'MaxStep', (13/18)/1e3);
sol = ode45(odefun, tspan, y0, options);
[y, yp] = deval(sol, tspan) % yp is y-prime (y')
y =
Columns 1 through 3 0 + 0i 0.000149371117698822 - 8.74290466347223e-11i 0.000593850411598535 - 7.10875020470179e-12i Columns 4 through 6 0.00132819985638987 - 1.65895186942128e-12i 0.00234745375139398 - 5.95623798827648e-13i 0.00364690051279341 - 2.70617263766076e-13i Columns 7 through 9 0.00522206707631183 - 1.42626355904756e-13i 0.00706870451694508 - 8.32449774310712e-14i 0.00918277488975191 - 5.23372549180808e-14i Columns 10 through 12 0.0115604391731636 - 3.48185724770688e-14i 0.0141980462065993 - 2.42143209444681e-14i 0.017092122526636 - 1.7451314136623e-14i Columns 13 through 15 0.0202393630170698 - 1.2950899838263e-14i 0.0236366222978676 - 9.84872225180023e-15i 0.0272809067864375 - 7.64594808207701e-15i Columns 16 through 18 0.031169367372005 - 6.04168931127621e-15i 0.0352992926503299 - 4.84749674404772e-15i 0.0396681026716628 - 3.94145189756681e-15i Columns 19 through 21 0.0442733431598302 - 3.24241862736225e-15i 0.0491126801647401 - 2.69504368690119e-15i 0.0541838951145055 - 2.26072375099067e-15i Columns 22 through 24 0.0594848802368446 - 1.91200343568839e-15i 0.0650136343225046 - 1.62900906703916e-15i 0.0707682588062083 - 1.39712457246199e-15i Columns 25 through 27 0.076746954143092 - 1.20544451978269e-15i 0.0829480164608167 - 1.04572453300378e-15i 0.089369834469532 - 9.11656647100207e-16i Columns 28 through 30 0.0960108866136756 - 7.98360967212335e-16i 0.10286973845123 - 7.02023811354232e-16i 0.109945040247545 - 6.19636631824521e-16i Columns 31 through 33 0.117235524772198 - 5.4880528800622e-16i 0.124740005288621 - 4.87609096054951e-16i 0.132457373727367 - 4.34495541141578e-16i Columns 34 through 36 0.140386599034969 - 3.88200839026214e-16i 0.148526725691339 - 3.4768943846025e-16i 0.156876872389597 - 3.12107543817558e-16i Columns 37 through 39 0.165436230873105 - 2.80747114809518e-16i 0.174204064925331 - 2.53017765759942e-16i 0.183179709508972 - 2.28424671261845e-16i Columns 40 through 42 0.192362570051574 - 2.06551075043324e-16i 0.201752121875624 - 1.87044353132282e-16i 0.2113479097719 - 1.69604840881079e-16i Columns 43 through 45 0.22114954771557 - 1.53976823628015e-16i 0.231156718725351 - 1.39941231905414e-16i 0.241369174866789 - 1.27309687633596e-16i Columns 46 through 48 0.251786737401525 - 1.15919627230175e-16i 0.262409297085286 - 1.05630287860364e-16i 0.27323681461817 - 9.6319389096335e-17i Columns 49 through 51 0.284269321251758 - 8.78803776355824e-17i 0.295506919558587 - 8.02201300829646e-17i 0.306949784370563 - 7.3257030072572e-17i Columns 52 through 54 0.318598163894094 - 6.69193526381729e-17i 0.330452381010976 - 6.11439018154854e-17i 0.34251283477549 - 5.58748577892358e-17i Columns 55 through 57 0.35478000211971 - 5.10627980989256e-17i 0.367254439780776 - 4.66638639585549e-17i 0.379936786465816 - 4.26390479865406e-17i Columns 58 through 60 0.392827765272418 - 3.89535838593367e-17i 0.405928186384993 - 3.55764218098556e-17i 0.41923895007025 - 3.24797766561675e-17i Columns 61 through 63 0.432761049998147 - 2.96387372971496e-17i 0.446495576918451 - 2.7030928451849e-17i 0.460443722727234 - 2.46362169287613e-17i Columns 64 through 66 0.474606784962578 - 2.24364559537015e-17i 0.488986171774456 - 2.04152621110871e-17i 0.503583407420437 - 1.85578203036515e-17i Columns 67 through 69 0.518400138346644 - 1.68507128422229e-17i 0.533438139922607 - 1.52817693662587e-17i 0.548699323909487 - 1.38399347882945e-17i Columns 70 through 72 0.564185746754093 - 1.25151528683543e-17i 0.579899618816521 - 1.12982633714691e-17i 0.595843314657762 - 1.01809110540147e-17i Columns 73 through 75 0.61201938453603 - 9.15546497179623e-18i 0.62843056728772 - 8.21494681221603e-18i 0.645079804802189 - 7.35296713065195e-18i Columns 76 through 78 0.661970258340474 - 6.56366852246032e-18i 0.679105326998836 - 5.84167489100917e-18i 0.696488668681494 - 5.18204608234435e-18i Columns 79 through 81 0.714124224026862 - 4.58023725138386e-18i 0.73201624383333 - 4.03206240532993e-18i 0.750169320661215 - 3.53366163927338e-18i Columns 82 through 84 0.768588425456956 - 3.08147163839017e-18i 0.787278950268152 - 2.67219907204337e-18i 0.80624675841374 - 2.30279654859767e-18i Columns 85 through 87 0.825498243872288 - 1.97044083667637e-18i 0.845040402197028 - 1.67251308955588e-18i 0.864880916025902 - 1.40658083475474e-18i Columns 88 through 90 0.885028259332959 - 1.1703815106714e-18i 0.905491826130283 - 9.61807345959525e-19i 0.926282091651604 - 7.7889138413146e-19i Columns 91 through 93 0.947410817595949 - 6.19794453452836e-19i 0.968891318607491 - 4.82792866300509e-19i 0.990738816343995 - 3.66266594645507e-19i Columns 94 through 96 1.01297092322675 - 2.68687592957645e-19i 1.03560832649641 - 1.88607792480594e-19i 1.05867579859296 - 1.24645994133376e-19i Columns 97 through 99 1.0822037773592 - 7.5472247421798e-20i 1.10623104017854 - 3.97867636832611e-20i 1.13080979181703 - 1.62860379486857e-20i Column 100 1.15601747352413 - 3.59242447518241e-21i
yp =
Columns 1 through 3 1.38350869222519e-15 + 0i 0.0412369899175437 + 4.40005118066934e-08i 0.0817288630656546 + 1.77304473973381e-09i Columns 4 through 6 0.121514896524142 + 2.73607498895247e-10i 0.160631338173492 + 7.31318522825841e-11i 0.199112267007545 + 2.6403988112413e-11i Columns 7 through 9 0.236989683230474 + 1.15271713733352e-11i 0.274293683577695 + 5.73608902422251e-12i 0.311052621800149 + 3.14080850813915e-12i Columns 10 through 12 0.347293253472141 + 1.84981630917606e-12i 0.383040866745612 + 1.15382448742241e-12i 0.418319400659591 + 7.5382585698402e-13i Columns 13 through 15 0.453151552430337 + 5.11654572928551e-13i 0.4875588749681 + 3.58563302684458e-13i 0.52156186570885 + 2.58194406800592e-13i Columns 16 through 18 0.555180047713462 + 1.90310550568753e-13i 0.588432043869964 + 1.43145856790338e-13i 0.621335644934 + 1.09598088648478e-13i Columns 19 through 21 0.653907872055901 + 8.5237673679364e-14i 0.686165034367851 + 6.72214303215872e-14i 0.718122782139676 + 5.36773865080462e-14i Columns 22 through 24 0.749796155955552 + 4.33447220540839e-14i 0.781199632314842 + 3.53567615502601e-14i 0.812347166017644 + 2.91067024652601e-14i Columns 25 through 27 0.843252229658484 + 2.41625445856791e-14i 0.873927850518993 + 2.02120231724867e-14i 0.904386645122159 + 1.70262608107417e-14i Columns 28 through 30 0.934640851685789 + 1.44353427646046e-14i 0.964702360691227 + 1.23116333428449e-14i 0.994582743764448 + 1.05582065771976e-14i Columns 31 through 33 1.02429328105009 + 9.10071075663193e-15i 1.05384498724463 + 7.88157318792078e-15i 1.08324863644258 + 6.85582209559713e-15i Columns 34 through 36 1.11251478593874 + 5.98804048584521e-15i 1.14165379912041 + 5.25012194189341e-15i 1.17067586757609 + 4.61960096204647e-15i Columns 37 through 39 1.19959103254012 + 4.07839928533953e-15i 1.22840920578838 + 3.61187639861934e-15i 1.25714019009539 + 3.20810454805129e-15i Columns 40 through 42 1.28579369936101 + 2.85731090770287e-15i 1.31437937851245 + 2.55144524111499e-15i 1.34290682328711 + 2.28384251692962e-15i Columns 43 through 45 1.37138560000185 + 2.04895790591941e-15i 1.39982526541584 + 1.84215734205711e-15i 1.42823538679662 + 1.65955102342642e-15i Columns 46 through 48 1.45662556230317 + 1.49786030837365e-15i 1.48500544180443 + 1.35431074134438e-15i 1.51338474825848 + 1.22654564171525e-15i Columns 49 through 51 1.5417732997859 + 1.11255596409401e-15i 1.57018103258012 + 1.01062310202328e-15i 1.59861802480994 + 9.19272039575295e-16i Columns 52 through 54 1.62709452168271 + 8.37232815670108e-16i 1.65562096185387 + 7.63408697048546e-16i 1.68420800538754 + 6.9684978932963e-16i Columns 55 through 57 1.71286656349555 + 6.36731074946768e-16i 1.74160783030945 + 5.82334069494163e-16i 1.77044331697105 + 5.33031447263108e-16i Columns 58 through 60 1.79938488836392 + 4.88274112424406e-16i 1.82844480285163 + 4.47580291943331e-16i 1.85763575543908 + 4.10526305639917e-16i Columns 61 through 63 1.88697092483386 + 3.7673873223212e-16i 1.91646402495494 + 3.45887741115285e-16i 1.946129361521 + 3.17681400664937e-16i Columns 64 through 66 1.97598189445068 + 2.91860807043591e-16i 2.0060373069274 + 2.68195904441786e-16i 2.03631208212506 + 2.46481889640262e-16i Columns 67 through 69 2.06682358876532 + 2.26536111730079e-16i 2.09759017688673 + 2.08195392550054e-16i 2.12863128546264 + 1.91313705514866e-16i Columns 70 through 72 2.15996756381745 + 1.75760160505783e-16i 2.19162100917675 + 1.61417250773342e-16i 2.22361512316354 + 1.48179324673976e-16i Columns 73 through 75 2.25597509064679 + 1.35951250785177e-16i 2.2887279850948 + 1.24647249722392e-16i 2.32190300552654 + 1.14189869982124e-16i Columns 76 through 78 2.35553175135414 + 1.04509088495717e-16i 2.3896485429493 + 9.55415194077157e-17i 2.42429079776133 + 8.72297169825614e-17i Columns 79 through 81 2.45949947442504 + 7.95215605686087e-17i 2.49531960074745 + 7.23697112710573e-17i 2.53180090607608 + 6.57311314574805e-17i Columns 82 through 84 2.56899858479841 + 5.95666594851577e-17i 2.60697422629152 + 5.38406331366313e-17i 2.64579695857514 + 4.85205562131107e-17i Columns 85 through 87 2.68554486980932 + 4.35768035971041e-17i 2.72630679611321 + 3.89823608896301e-17i 2.76818459995312 + 3.47125954922032e-17i Columns 88 through 90 2.81129611712182 + 3.07450567897552e-17i 2.85577903323742 + 2.7059303970948e-17i 2.90179608222685 + 2.36367611145594e-17i Columns 91 through 93 2.94954217495992 + 2.04606006792668e-17i 2.99925443371145 + 1.75156588395919e-17i 3.05122676315099 + 1.47883899673817e-17i Columns 94 through 96 3.1058318206262 + 1.22668745670366e-17i 3.16355572332299 + 9.94090880566564e-18i 3.22505622698764 + 7.8022336883866e-18i Columns 97 through 99 3.29126820348546 + 5.8450341876331e-18i 3.36361695552618 + 4.06704084083267e-18i 3.44452726475602 + 2.47226704657304e-18i Column 100 3.53905122463319 + 1.07990810763503e-18i
plot(tspan, y, tspan, yp), grid
Warning: Imaginary parts of complex X and/or Y arguments ignored.
xlabel('\alpha'), legend('y', 'y-prime')
Kaiwei
Kaiwei on 7 Jan 2024
Seems I can not solve this problem? Do you think that will be a big problem?
Actually I study a bandit learning model (economics theory field), and this U stands for my value function. The belief updates in a Bayesian way.

Sign in to comment.

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!