Newmark-Beta in dynamic analysis for solving nonlinear stiffness matrix problem
24 views (last 30 days)
Show older comments
Hello everyone i am solving multi degree freedom of system by using Newmarks beta method in which stiffness coefficient are nonlineare . When i am ruing the code, the result is look like scary . geting displacement value in kilometerers.I am attaching code . Please help me out.
Thanks
__________________________________________________________________________________________________________________
clear all
clc
% Define parameters
n = 3; % Number of degrees of freedom
m = eye(n); % Mass matrix (identity matrix for simplicity)
c = 0.1 * eye(n); % Damping matrix (proportional damping)
k = diag([11, 8, 9]); % Nonlinear stiffness matrix
% Time parameters
dt = 0.01; % Time step
t_final = 10; % Final time
t = 0:dt:t_final;
% Sine loading parameters
omega = 2*pi*0.5; % Frequency of the sine loading
F_sine = @(t) 200*10^3*sin(omega*t); % Sine loading function
% Initial conditions
x0 = zeros(n, 1); % Initial displacement
v0 = zeros(n, 1); % Initial velocity
% Newmark-Beta parameters
beta = 0.25; % Newmark-Beta parameter
gamma = 0.5; % Newmark-Beta parameter
% Initialize arrays
x = zeros(n, length(t)); % Displacement array
v = zeros(n, length(t)); % Velocity array
a = zeros(n, length(t)); % Acceleration array
% Initial conditions
x(:,1) = x0;
v(:,1) = v0;
a(:,1) = m \ (-c*v(:,1) - NonlinearStiffness(x(:,1), k));
% Newmark-Beta iteration
for i = 2:length(t)
% Predictor step
x_pred = x(:,i-1) + dt*v(:,i-1) + (dt^2/2) * ((1-2*beta)*a(:,i-1));
v_pred = v(:,i-1) + dt*((1-gamma)*a(:,i-1));
% Corrector step
a_pred = m \ (-c*v_pred - NonlinearStiffness(x_pred, k) + F_sine(t(i)));
x(:,i) = x(:,i-1) + dt*v_pred + (dt^2/2) * (beta*a_pred + (1-beta)*a(:,i-1));
v(:,i) = v_pred + dt*((1-gamma)*a_pred + gamma*a(:,i-1));
% Update acceleration for next iteration
a(:,i) = a_pred;
end
% Plot results
plot(t, x(1,:));
xlabel('Time');
ylabel('Displacement DOF 1 ')
% Nonlinear stiffness function
function F = NonlinearStiffness(x, k)
F = k * x.^3; % Element-wise cubic nonlinear stiffness
end
________________________________________________________________________
First figure is the displcement time seris and ssecond is the obtain displcamenet.


0 Comments
Accepted Answer
VBBV
on 5 Feb 2024
Edited: VBBV
on 5 Feb 2024
clear all
clc
% Define parameters
n = 3; % Number of degrees of freedom
m = eye(n); % Mass matrix (identity matrix for simplicity)
c = 0.1 * eye(n); % Damping matrix (proportional damping)
k = diag([11, 8, 9]); % Nonlinear stiffness matrix
% Time parameters
dt = 0.001; % Time step
t_final = 10; % Final time
t = 0:dt:t_final;
% Sine loading parameters
omega = 2*pi*0.5; % Frequency of the sine loading
F_sine = @(t) 200*10^3*sin(omega*t); % Sine loading function
% Initial conditions
x0 = zeros(n, 1); % Initial displacement
v0 = zeros(n, 1); % Initial velocity
% Newmark-Beta parameters
beta = 0.25; % Newmark-Beta parameter
gamma = 0.5; % Newmark-Beta parameter
% Initialize arrays
x = zeros(n, length(t)); % Displacement array
v = zeros(n, length(t)); % Velocity array
a = zeros(n, length(t)); % Acceleration array
% Initial conditions
x(:,1) = x0;
v(:,1) = v0;
a(:,1) = m \ (-c*v(:,1) - NonlinearStiffness(x(:,1), k));
% Newmark-Beta iteration
for i = 2:length(t)
% Predictor step
x_pred = x(:,i-1) + dt*v(:,i-1) + (dt^2/2) * ((1-2*beta)*a(:,i-1) + 2*beta*a(:,i-1));
v_pred = v(:,i-1) + dt*((1-gamma)*a(:,i-1));
% Corrector step
a_pred = m \ (-c*v_pred - NonlinearStiffness(x_pred, k) + F_sine(t(i)));
x(:,i) = x(:,i-1) + dt*v_pred + (dt^2/2) * (beta*a_pred + (1-beta)*a(:,i-1));
v(:,i) = v_pred + dt*((1-gamma)*a_pred + dt*gamma*a(:,i));
% Update acceleration for next iteration
a(:,i) = a_pred;
end
% Plot results
plot(t, x(1:3,:));
xlabel('Time');
ylabel('Displacement DOF 1 ')
xlim([0 5]); grid
% Nonlinear stiffness function
function F = NonlinearStiffness(x, k)
F = k * x.^3; % Element-wise cubic nonlinear stiffness
end
3 Comments
Parvesh Deepan
on 25 Jun 2024
Can you please solve this problem based on Newmark Beta method (problem is attached herewith).
More Answers (0)
See Also
Categories
Find more on Dynamic System Models in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!