# Why does this code give me an error?

15 views (last 30 days)

Show older comments

I want to run the Wild Horse Optimizer (WHO) with my fitness function. It will give me an estimated solution "gBest". Then I want to supply that estimated solution to the local builtin optimizer "sqp" while providing an initial guess as a starting point. My code is below:

clear;clc

u=[-33 33];% desired vector

dim=length(u);

lb=-90*ones(1,dim);

ub= 90*ones(1,dim);

Noise=0;

% Define the objective function

objectiveFunctionForMetaheuristic = @(x) MIMOfunNoise(x,u,Noise) + penaltyTerm(x, u);

objectiveFunctionForLocal = @(x) MIMOfunNoise(x, u, Noise) + penaltyTerm(x, u);

% Initial guess

initialGuess = u;

% Set options for fmincon (SQP solver)

options = optimoptions('fmincon', 'Algorithm', 'sqp', 'Display', 'off');

Runs=30;

% Pre-allocation for WHO algorithm

one=zeros(Runs,1);

time=zeros(Runs,1);

temp=zeros(Runs,dim);

two=zeros(Runs,dim);

% Pre-allocation for SQP algorithm

oneSQP=zeros(Runs,1);

timeSQP=zeros(Runs,1);

tempSQP=zeros(Runs,dim);

twoSQP=zeros(Runs,dim);

nn=0;

for n=1:Runs %------------(2)

nn=nn+1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Call WHO

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%[time,gBest,gBestScore]=WHO(N,Max_iter,lb,ub,dim,objectiveFunction);

[time,gBest,gBestScore]=WHO(30,500,lb,ub,dim,objectiveFunctionForMetaheuristic);

one(nn)=gBestScore;

temp(nn,:)=gBest;

time1(nn)=time;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%- Swapping

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[~, ix] = sort(u);

[~, ix1(ix)] = sort(temp(nn,:));

two(nn,:) = temp(nn,ix1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Call the SQP

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tic;

%[bestX, fmin] = fmincon(objectiveFunctionForLocal, gBest, [], [], [], [], lb, ub, [], options);

objectiveFunctionForLocal(gBest)

[c,ceq] = nonlinear_constraint(gBest)

[bestX, fmin] = fmincon(objectiveFunctionForLocal, gBest, [], [], [], [], lb, ub, @(x) nonlinear_constraint(x), options, initialGuess);

timeSQP(nn)=toc;

oneSQP(nn)=fmin;

tempSQP(nn,:)=bestX;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%- Swapping

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[~, ix] = sort(u); % u is my desired vector

[~, ix1(ix)] = sort(tempSQP(nn,:));

twoSQP(nn,:) = tempSQP(nn,ix1);

end

%%%%%%%%%%%%%%%%%%%

% Choose best

%%%%%%%%%%%%%%%%%%%

[one1 ind]=sort(one,'descend');

[fitness,ind1]=min(one1);

two1=two(ind1,:);

[one1SQP indSQP]=sort(oneSQP','descend');

[fitnessSQP,ind1SQP]=min(one1SQP);

two1SQP=twoSQP(ind1SQP,:);

% Display results

format compact

fprintf('Global_Sol : %s\n', num2str(round(two1, 4),'%.4f '));

fprintf('Local_Sol : %s\n', num2str(round(two1SQP,4),'%.4f '));

fprintf('Desired : %s\n', num2str(u,'%.4f '));

fprintf('Global_fmin : %f\n', fitness);

fprintf('Local_fmin : %f\n', fitnessSQP);

%%%%%%%%%%%%%%%%%%

% Save workspace data

%%%%%%%%%%%%%%%%%

%save 2sn0dB

function e=MIMOfunNoise(b,u,Noise)

M=6; % const1

N=6; % const2

K=length(u);%const3

d = 0.5; % const4

vec = @(MAT) MAT(:);

vecH = @(MAT) MAT(:).';

steerVecT = @(ang) exp(1j*2*pi*d*(0:M-1).'*sin(vecH(ang)));

steerVecR = @(ang) exp(1j*2*pi*d*(0:N-1).'*sin(vecH(ang)));

%%%%%%%%%%%%%%%%%%%%

% Swapping vector b

%%%%%%%%%%%%%%%%%%%%

[~, ix] = sort(u);

[~, ix1(ix)] = sort(b);

b = b(ix1);

A = ones(K, 1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculation of yo and ye

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

yo = yMatTR(deg2rad(u), steerVecT, steerVecR);

yo=awgn(yo,Noise);

ye = yMatTR(deg2rad(b), steerVecT, steerVecR);

%%%%%%%%%%%%%%%%%%

% MSE

%%%%%%%%%%%%%%%%%%

e=norm(yo-ye).^2/(M*N);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% User defined function called within MIMOfunNoise

%%%%%%%%%%%%%%%%%%%%%%%%5%%%

function y = yMatTR(targetAngle, steerVecT, steerVecR)

steerA = steerVecT(targetAngle);

steerB = steerVecR(targetAngle);

y=sum( steerA.*permute(steerB,[3,2,1]) ,2);

y=y(:);

end

function penalty = penaltyTerm(x, desiredResult)

% Define a penalty term based on the deviation from the desired result

penalty = 100 * sum((x - desiredResult).^2);

end

function [X]=initialization(N,dim,up,down)

if size(up,1)==1

X=rand(N,dim).*(up-down)+down;

end

if size(up,1)>1

for i=1:dim

high=up(i);low=down(i);

X(:,i)=rand(1,N).*(high-low)+low;

end

end

end

function Stallion=exchange(Stallion)

nStallion=length(Stallion);

for i=1:nStallion

[value,index]=min([Stallion(i).group.cost]);

if value<Stallion(i).cost

bestgroup=Stallion(i).group(index);

Stallion(i).group(index).pos=Stallion(i).pos;

Stallion(i).group(index).cost=Stallion(i).cost;

Stallion(i).pos=bestgroup.pos;

Stallion(i).cost=bestgroup.cost;

end

end

end

% Developed in MATLAB R2017b

% Source codes demo version 1.0

% _____________________________________________________

% Author, inventor and programmer: Iraj Naruei and Farshid Keynia,

% e-Mail: irajnaruei@iauk.ac.ir , irajnaruei@yahoo.com

% _____________________________________________________

% Co-author and Advisor: Farshid Keynia

%

% e-Mail: fkeynia@gmail.com

% _____________________________________________________

% Co-authors: Amir Sabbagh Molahoseyni

%

% e-Mail: sabbagh@iauk.ac.ir

% _____________________________________________________

% You can find the Wild Horse Optimizer code at

% _____________________________________________________

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Max_iter: maximum iterations, N: populatoin size, Convergence_curve: Convergence curve

%function [Convergence_curve,gBest,gBestScore]=WHO(N,Max_iter,lb,ub,dim,fobj)

function [time,gBest,gBestScore]=WHO(N,Max_iter,lb,ub,dim,fobj)

tic; % By Me

if size(ub,1)==1

ub=ones(1,dim).*ub;

lb=ones(1,dim).*lb;

end

PS=0.2; % Stallions Percentage

PC=0.13; % Crossover Percentage

NStallion=ceil(PS*N); % number Stallion

Nfoal=N-NStallion;

Convergence_curve = zeros(1,Max_iter);

gBest=zeros(1,dim);

gBestScore=inf;

%create initial population

empty.pos=[];

empty.cost=[];

group=repmat(empty,Nfoal,1);

for i=1:Nfoal

group(i).pos=lb+rand(1,dim).*(ub-lb);

group(i).cost=fobj(group(i).pos);

end

Stallion=repmat(empty,NStallion,1);

for i=1:NStallion

Stallion(i).pos=lb+rand(1,dim).*(ub-lb);

Stallion(i).cost=fobj(Stallion(i).pos);

end

ngroup=length(group);

a=randperm(ngroup);

group=group(a);

i=0;

k=1;

for j=1:ngroup

i=i+1;

Stallion(i).group(k)=group(j);

if i==NStallion

i=0;

k=k+1;

end

end

Stallion=exchange(Stallion);

[value,index]=min([Stallion.cost]);

WH=Stallion(index); % global

gBest=WH.pos;

gBestScore=WH.cost;

Convergence_curve(1)=WH.cost;

l=2; % Loop counter

while l<Max_iter+1

TDR=1-l*((1)/Max_iter);

for i=1:NStallion

ngroup=length(Stallion(i).group);

[~,index]=sort([Stallion(i).group.cost]);

Stallion(i).group=Stallion(i).group(index);

for j=1:ngroup

if rand>PC

z=rand(1,dim)<TDR;

r1=rand;

r2=rand(1,dim);

idx=(z==0);

r3=r1.*idx+r2.*~idx;

rr=-2+4*r3;

Stallion(i).group(j).pos= 2*r3.*cos(2*pi*rr).*(Stallion(i).pos-Stallion(i).group(j).pos)+(Stallion(i).pos);

else

A=randperm(NStallion);

A(A==i)=[];

a=A(1);

c=A(2);

% B=randperm(ngroup);

% BB=randperm(ngroup);

% b1=B(1);b2=BB(1);

x1=Stallion(c).group(end).pos;

x2=Stallion(a).group(end).pos;

y1=(x1+x2)/2; % Crossover

Stallion(i).group(j).pos=y1;

end

Stallion(i).group(j).pos=min(Stallion(i).group(j).pos,ub);

Stallion(i).group(j).pos=max(Stallion(i).group(j).pos,lb);

Stallion(i).group(j).cost=fobj(Stallion(i).group(j).pos);

end

% end

%

% for i=1:NStallion

R=rand;

% z=rand(1,dim)<TDR;

% r1=rand;

% r2=rand(1,dim);

% idx=(z==0);

% r3=r1.*idx+r2.*~idx;

% rr=-2+4*r3;

if R<0.5

k= 2*r3.*cos(2*pi*rr).*(WH.pos-(Stallion(i).pos))+WH.pos;

else

k= 2*r3.*cos(2*pi*rr).*(WH.pos-(Stallion(i).pos))-WH.pos;

end

k=min(k,ub);

k=max(k,lb);

fk=fobj(k);

if fk<Stallion(i).cost

Stallion(i).pos =k;

Stallion(i).cost=fk;

end

end

Stallion=exchange(Stallion);

[value,index]=min([Stallion.cost]);

if value<WH.cost

WH=Stallion(index);

end

gBest=WH.pos;

gBestScore=WH.cost;

Convergence_curve(l)=WH.cost;

l = l + 1;

time=toc; % By Me

end

end

The WHO and its supported files are in the attachment. But when I run the above code, it gives me an error like this:

Error using abcd>@(x)MIMOfunNoise(x,u,Noise)+penaltyTerm(x,u)

Too many input arguments.

Error in fmincon (line 563)

initVals.f = feval(funfcn{3},X,varargin{:});

Error in abcd (line 61)

[bestX, fmin] = fmincon(objectiveFunctionForLocal, gBest, [], [], [], [], lb, ub, @(x) nonlinear_constraint(x), options, initialGuess);

Caused by:

Failure in initial objective function evaluation. FMINCON

cannot continue.

>>

##### 8 Comments

Sam Chak
on 24 Feb 2024

@Sadiq Akbar, you should check and compare the fmincon() function in your code with the proper syntax of fmincon as shown below:

[bestX, fmin] = fmincon(objectiveFunctionForLocal, ... % cost function

gBest, ... % initial point

[], ... % A

[], ... % b

[], ... % Aeq

[], ... % beq

lb, ... % lower bound

ub, ... % upper bound

@(x) nonlinear_constraint(x), ... % nonlinear inequalities

options, ... % optimoptions()

initialGuess); % ???

### Answers (2)

Sam Chak
on 24 Feb 2024

Hi @Sadiq Akbar

If nonlinear inequality constraints are not available, you can disable them in the code. It appears that the updated code now returns some results. Please verify and check.

% [c,ceq] = nonlinear_constraint(gBest)

[bestX, fmin] = fmincon(objectiveFunctionForLocal, gBest, [], [], [], [], lb, ub, [], options)

%%%%%%%%%%%%%%%%%%%

% Choose best

%%%%%%%%%%%%%%%%%%%

[one1 ind]=sort(one,'descend');

[fitness,ind1]=min(one1);

two1=two(ind1,:);

[one1SQP indSQP]=sort(oneSQP','descend');

[fitnessSQP,ind1SQP]=min(one1SQP);

two1SQP=twoSQP(ind1SQP,:);

% Display results

format compact

fprintf('Global_Sol : %s\n', num2str(round(two1, 4),'%.4f '));

fprintf('Local_Sol : %s\n', num2str(round(two1SQP,4),'%.4f '));

fprintf('Desired : %s\n', num2str(u,'%.4f '));

fprintf('Global_fmin : %f\n', fitness);

fprintf('Local_fmin : %f\n', fitnessSQP);

##### 2 Comments

Sam Chak
on 24 Feb 2024

Walter Roberson
on 24 Feb 2024

[bestX, fmin] = fmincon(objectiveFunctionForLocal, gBest, [], [], [], [], lb, ub, @(x) nonlinear_constraint(x), options, initialGuess);

fmincon() does not expect an initialGuess parameter. It sees the initialGuess as an extra parameter. What it does with that extra parameter is no longer documented: it passes that extra parameter as an extra parameter to objectiveFunctionForLocal and as an extra parameter to @(x) nonlinear_constraint(x) too. But

objectiveFunctionForLocal = @(x) MIMOfunNoise(x, u, Noise) + penaltyTerm(x, u);

expects only a single parameter, and so gives an error when the extra parameter intialGuess is passed to it.

### See Also

### Categories

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!