Plateau followed by one phase decay
9 views (last 30 days)
Show older comments
Good morning, I am trying to figure out how to compute tau constants from my data
My data could be be fitted by such plateau followed by one phase decay function:
I tried to implement it in MATLAB as follows:
x = 0:0.5:20; % time in seconds
Y0 = -0.6; % signal baseline value
Plateau = -1; % singnal plateu after trigger/stimulus, maximum change from baseline
tau = 0.6; % exponenential decay constant
K = 1/tau; % rate constant in units reciprocal of the x-axis units
X0 = 5; % trigger time
y = Plateau+(Y0-Plateau)*exp(-K*(x-X0));
figure;plot(x,y,'k');
However, I get the following result:
I would have 2 questions:
1) why cant I reproduce the one phase decay function?
2) would you know how to use the matlab funciton "fit" for such data with plateau followed by one phase decay function?
Thanks community for your kind support,
Best regards.
0 Comments
Answers (2)
Alan Stevens
on 26 Feb 2024
Like this?
x = 0:0.5:20; % time in seconds
Y0 = -0.6; % signal baseline value
Plateau = -1; % singnal plateu after trigger/stimulus, maximum change from baseline
tau = 0.6; % exponenential decay constant
K = 1/tau; % rate constant in units reciprocal of the x-axis units
X0 = 5; % trigger time
y = Y0*(x<=X0)+(Plateau+(Y0-Plateau)*exp(-K*(x-X0))).*(x>X0);
figure;plot(x,y,'k');
5 Comments
Alan Stevens
on 26 Feb 2024
Here's a quick fit of tau and Y0. I'll leave you to tidy it up and extend it to fit X0 as well.
x = 0:0.5:20;
y = [-0.137055262721364 -0.118841612584876 -0.274602636741299 -0.117324828772196 ...
-0.173528150754918 -0.280491919000118 -0.244300356226590 -0.367583069701879 ...
-0.423274105143034 -0.529129050767333 -0.774173830727337 -0.676677606159725 ...
-0.730062482232667 -0.863905715495076 -0.831675679632950 -0.987303352625066 ...
-0.949979744575626 -0.865710605996821 -0.901728879393798 -0.877082148456042 ...
-0.944693953430828 -1.07404346760035 -0.915521627715257 -0.901789963321291 ...
-0.955365771797851 -0.941530617721837 -0.945983148775748 -1.01735658137382 ...
-0.965635004813717 -1.06321643780048 -0.956807780654745 -1.09208906741553 ...
-1.04341265165344 -1.08982901817714 -1.07984413818039 -0.934740294823467 ...
-0.960591807908718 -1.03623550995537 -0.909687220130007 -1.09290177705358 ...
-1.01208835337351];
Plateau = -1;
X0 = 2;
fn = @(x,tau,Y0)Y0*(x<=X0)+(Plateau+(Y0-Plateau)*exp(-(x-X0)/tau)).*(x>X0);
tauY0 = [1, -0.1]; % Initial guess
tauY = fminsearch(@(tauY) F(tauY,x,y), tauY0);
tau = tauY(1); Y0 = tauY(2);
yfit = fn(x,tau,Y0);
plot(x,y,'.',x,yfit), grid
xlabel('x'), ylabel('y')
text(12,-0.25,['tau = ' num2str(tau)])
text(12,-0.35,['Y0 = ' num2str(Y0)])
function Z = F(tauY,x,y)
tau = tauY(1); Y0 = tauY(2);
Plateau = -1;
X0 = 2;
yvals = zeros(1,numel(x));
for i = 1:numel(x)
t = x(i) - X0;
yvals(i) = Y0*(t<=0)+(Plateau+(Y0-Plateau)*exp(-t/tau)).*(t>0);
end
Z = norm(yvals-y);
end
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!