Hi, I'm working on dynamics simulation with matlab, so I have the vector r with the size of [3 1]. I examine the calculation
dot(r,r) - (r(1)^2+r(2)^2 +r(3)^2) and I got an answer different than 0. Is there any explanation for this ?
syms alpha1(t) beta1(t) gamma1(t)
syms h d1 d2 r1 r2 r3 r4 t1 t2 t3 L real
r = [(a*b*c*d5*m1*sin(conj(gamma1(t))-gamma(t)))/(-a*b*c*m1 +pi*m3*r1^2*t1 +pi*m1*r1^2*t1);
-(0.5000*(- a*b*c^2*m1 + a*b*c*m1*t1 + 3.1416*m3*r1^2*t1*t3 + 3.1416*m3*r1^2*t1^2))/(- a*b*c*m1 + 3.1416*m3*r1^2*t1 + 3.1416*m1*r1^2*t1);
-(a*b*c*d5*m1*cos(conj(gamma1(t)) - gamma1(t)))/(- a*b*c*m1 + 3.1416*m3*r1^2*t1 + 3.1416*m1*r1^2*t1) ];
dot(r,r) - (r_x^2 + r_y^2 + r_z^2 )
ans =
