DDPG does not converge

2 views (last 30 days)
Esan freedom
Esan freedom on 17 May 2024
Commented: Alan on 27 Jun 2024
Hello
I am using a DDPG agent that generates 4 continuous actions (2 positive values- 2negative values). The summation of 2 positive action values must be equal to the positive part of a reference value, and the summation of 2 negative action values must be equal to the negative part of the reference value. However, the agent can't learn to track the reference. I have tried different reward functions and hyperparameters, but after a while it always chooses the maximum values of defined action ranges ([-1 -1 1 1]).
Any suggestion I appreciate
open_system(mdl)
obsInfo = rlNumericSpec([2 1]);
obsInfo.Name = 'observations';
numObservations = obsInfo.Dimension(1);
actInfo = rlNumericSpec([4 1],...
LowerLimit=[-1 -1 0 0]',...
UpperLimit=[0 0 1 1]');
numActions = actInfo.Dimension(1);
%Build the environment interface object
agentblk = 'MEMG_RL/RL Agent';
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo);
Ts = 2e-2;
Tf = 60;
statepath = [featureInputLayer(numObservations , Name = 'stateinp')
fullyConnectedLayer(96,Name = 'stateFC1')
reluLayer
fullyConnectedLayer(74,Name = 'stateFC2')
reluLayer
fullyConnectedLayer(36,Name = 'stateFC3')];
actionpath = [featureInputLayer(numActions, Name = 'actinp')
fullyConnectedLayer(72,Name = 'actFC1')
reluLayer
fullyConnectedLayer(36,Name = 'actFC2')];
commonpath = [additionLayer(2,Name = 'add')
fullyConnectedLayer(96,Name = 'FC1')
reluLayer
fullyConnectedLayer(72,Name = 'FC2')
reluLayer
fullyConnectedLayer(24,Name = 'FC3')
reluLayer
fullyConnectedLayer(1,Name = 'output')];
critic_network = layerGraph();
critic_network = addLayers(critic_network,actionpath);
critic_network = addLayers(critic_network,statepath);
critic_network = addLayers(critic_network,commonpath);
critic_network = connectLayers(critic_network,'actFC2','add/in1');
critic_network = connectLayers(critic_network,'stateFC3','add/in2');
plot(critic_network)
critic = dlnetwork(critic_network);
criticOptions = rlOptimizerOptions('LearnRate',3e-04,'GradientThreshold',1);
critic = rlQValueFunction(critic,obsInfo,actInfo,...
'ObservationInputNames','stateinp','ActionInputNames','actinp');
%% actor
actorNetwork = [featureInputLayer(numObservations,Name = 'observation')
fullyConnectedLayer(72,Name = 'actorFC1')
reluLayer
fullyConnectedLayer(48,Name='actorFc2')
reluLayer
fullyConnectedLayer(36,Name='actorFc3')
reluLayer
fullyConnectedLayer(numActions,Name='output')
tanhLayer
scalingLayer(Name = 'actorscaling',scale = max(actInfo.UpperLimit))];
actorNetwork = dlnetwork(actorNetwork);
actorOptions = rlOptimizerOptions('LearnRate',3e-04,'GradientThreshold',1);
actor = rlContinuousDeterministicActor(actorNetwork,obsInfo,actInfo);
%% agent
agentOptions = rlDDPGAgentOptions(...
'SampleTime',Ts,...
'ActorOptimizerOptions',actorOptions,...
'CriticOptimizerOptions',criticOptions,...
'ExperienceBufferLength',1e6,...
'MiniBatchSize',128);
agentOptions.NoiseOptions.StandardDeviation = 0.1; %.07/sqrt(Ts) ;
agentOptions.NoiseOptions.StandardDeviationDecayRate = 1e-6;
maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
'MaxEpisodes',maxepisodes, ...
'MaxStepsPerEpisode',maxsteps, ...
'ScoreAveragingWindowLength',20, ...
'Verbose',false, ...
'Plots','training-progress',...
'StopTrainingCriteria','EpisodeCount',...
'StopTrainingValue',5000);
agent = rlDDPGAgent(actor,critic,agentOptions);
  2 Comments
Esan freedom
Esan freedom on 20 May 2024
@ Emmanouil Tzorakoleftherakis
It learns and get lost again as reward plot shows.
I aapreciate at once
Alan
Alan on 27 Jun 2024
Hi Esan,
Could you provide the .slx file of the Simulink model.
Regards.

Sign in to comment.

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!