Which is the difference between 'multi-gpu' and 'parallel-gpu' in 'trainingOption' function of the DeepLearning Toolbox?
4 views (last 30 days)
Show older comments
Hi everyone,
I have two NVIDIA RTX 3060 installed on my local computer and I want to train a neural network in parallel on both GPUs. I am worried about which is the best strategy between 'multi-gpu' and 'parallel-gpu'. Does anyone know how they work and which is the difference between 'multi-gpu' and 'parallel-gpu'?
Thank you.
0 Comments
Accepted Answer
More Answers (1)
Joss Knight
on 14 Jun 2024
The purpose of 'multi-gpu' is effectively to try to ensure you are using a local pool with numGpus workers, rather than needing to understand anything about configuring a cluster. So either can work, but multi-gpu will give you helpful errors if you're doing something you didn't intend.
0 Comments
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!