Can any one help me to calculated and plot Chromaticity Diagram CIE(1931, 1976) from PL data
50 views (last 30 days)
Show older comments
Mushtaq Al-Jubbori
on 10 Sep 2024
Commented: Malay Agarwal
on 23 Sep 2024
Can any one help me to calculated and plot Chromaticity Diagram from PL data attached
λ S1 S2 S3
200 2.2 0.6 1
201 2.3 0.6 1
202 2.3 0.6 1
203 2.3 0.7 1
204 2.4 0.7 1
205 2.4 0.7 1.1
206 2.5 0.7 1.1
207 2.5 0.7 1.1
208 2.5 0.8 1.1
209 2.5 0.8 1.1
210 2.5 0.8 1.1
211 2.5 0.8 1.2
212 2.6 0.8 1.2
213 2.6 0.8 1.2
214 2.6 0.8 1.2
215 2.6 0.8 1.2
216 2.6 0.8 1.2
217 2.6 0.8 1.3
218 2.6 0.8 1.3
219 2.6 0.8 1.3
220 2.6 0.8 1.3
221 2.6 0.8 1.3
222 2.6 0.8 1.3
223 2.5 0.9 1.3
224 2.5 0.9 1.3
225 2.5 0.9 1.3
226 2.5 0.9 1.3
227 2.4 0.9 1.3
228 2.4 0.9 1.3
229 2.4 0.9 1.3
230 2.4 0.9 1.3
231 2.4 0.9 1.3
232 2.4 0.9 1.3
233 2.3 0.9 1.3
234 2.3 0.9 1.3
235 2.3 0.9 1.4
236 2.3 0.9 1.4
237 2.3 0.9 1.4
238 2.3 0.9 1.3
239 2.3 0.9 1.3
240 2.2 0.9 1.3
241 2.2 0.9 1.3
242 2.2 1 1.3
243 2.2 1 1.3
244 2.2 1 1.3
245 2.2 1 1.3
246 2.2 1 1.3
247 2.2 1 1.3
248 2.2 1 1.3
249 2.2 1 1.3
250 2.2 1 1.3
251 2.2 1 1.2
252 2.2 1 1.2
253 2.2 1 1.2
254 2.2 1 1.2
255 2.2 1 1.2
256 2.2 1 1.2
257 2.2 1 1.2
258 2.2 1 1.2
259 2.2 0.9 1.2
260 2.3 0.9 1.2
261 2.3 0.9 1.2
262 2.3 0.9 1.2
263 2.3 0.9 1.2
264 2.3 0.9 1.2
265 2.3 0.9 1.2
266 2.3 0.8 1.2
267 2.3 0.8 1.2
268 2.3 0.8 1.2
269 2.3 0.8 1.2
270 2.2 0.8 1.1
271 2.2 0.8 1.1
272 2.3 0.8 1.1
273 2.3 0.8 1.1
274 2.3 0.8 1.1
275 2.3 0.8 1.1
276 2.3 0.8 1.1
277 2.3 0.8 1.1
278 2.3 0.8 1.1
279 2.3 0.8 1.1
280 2.4 0.8 1.1
281 2.4 0.8 1.1
282 2.4 0.8 1.1
283 2.4 0.7 1.1
284 2.4 0.7 1.1
285 2.5 0.7 1.1
286 2.5 0.7 1.1
287 2.5 0.7 1.1
288 2.5 0.7 1.1
289 2.6 0.7 1.1
290 2.6 0.7 1.1
291 2.6 0.7 1.1
292 2.7 0.7 1.1
293 2.7 0.7 1.1
294 2.7 0.7 1.1
295 2.8 0.7 1.1
296 2.8 0.7 1.1
297 2.8 0.7 1.1
298 2.8 0.7 1.1
299 2.9 0.7 1.2
300 2.9 0.7 1.2
301 2.9 0.7 1.2
302 2.9 0.7 1.2
303 2.9 0.7 1.2
304 3 0.7 1.2
305 3 0.7 1.2
306 3 0.7 1.2
307 3 0.7 1.2
308 3 0.7 1.2
309 3.1 0.7 1.2
310 3.1 0.7 1.2
311 3.1 0.7 1.2
312 3.1 0.7 1.2
313 3.1 0.7 1.2
314 3.1 0.7 1.2
315 3.1 0.7 1.2
316 3.2 0.7 1.2
317 3.2 0.7 1.2
318 3.2 0.8 1.2
319 3.2 0.8 1.2
320 3.2 0.8 1.2
321 3.3 0.8 1.2
322 3.3 0.8 1.2
323 3.3 0.8 1.3
324 3.3 0.8 1.3
325 3.4 0.8 1.3
326 3.4 0.8 1.3
327 3.4 0.8 1.3
328 3.4 0.8 1.3
329 3.4 0.8 1.3
330 3.5 0.8 1.3
331 3.5 0.8 1.3
332 3.5 0.8 1.3
333 3.5 0.8 1.3
334 3.5 0.8 1.3
335 3.5 0.8 1.3
336 3.5 0.8 1.3
337 3.6 0.8 1.3
338 3.6 0.8 1.3
339 3.6 0.8 1.3
340 3.6 0.8 1.3
341 3.6 0.8 1.3
342 3.6 0.8 1.3
343 3.6 0.8 1.3
344 3.6 0.8 1.3
345 3.6 0.8 1.3
346 3.6 0.8 1.3
347 3.6 0.8 1.3
348 3.5 0.8 1.3
349 3.5 0.8 1.3
350 3.5 0.8 1.3
351 3.5 0.8 1.3
352 3.5 0.7 1.3
353 3.5 0.7 1.3
354 3.5 0.7 1.3
355 3.4 0.7 1.3
356 3.4 0.7 1.3
357 3.4 0.7 1.3
358 3.4 0.7 1.3
359 3.4 0.7 1.4
360 3.4 0.7 1.4
361 3.4 0.7 1.4
362 3.4 0.7 1.4
363 3.4 0.7 1.4
364 3.3 0.7 1.4
365 3.3 0.7 1.4
366 3.3 0.7 1.4
367 3.3 0.6 1.4
368 3.3 0.6 1.4
369 3.3 0.6 1.4
370 3.3 0.6 1.4
371 3.3 0.6 1.5
372 3.2 0.6 1.5
373 3.2 0.6 1.5
374 3.2 0.6 1.5
375 3.2 0.6 1.5
376 3.2 0.6 1.5
377 3.2 0.6 1.5
378 3.2 0.6 1.5
379 3.2 0.6 1.5
380 3.2 0.6 1.5
381 3.2 0.6 1.6
382 3.2 0.6 1.6
383 3.2 0.7 1.6
384 3.2 0.7 1.6
385 3.2 0.7 1.7
386 3.2 0.7 1.7
387 3.2 0.7 1.7
388 3.2 0.8 1.7
389 3.2 0.8 1.8
390 3.2 0.8 1.8
391 3.2 0.8 1.8
392 3.2 0.8 1.8
393 3.3 0.9 1.9
394 3.3 0.9 1.9
395 3.3 0.9 1.9
396 3.3 0.9 2
397 3.3 0.9 2
398 3.3 0.9 2.1
399 3.4 1 2.1
400 3.4 1 2.1
401 3.4 1 2.2
402 3.4 1 2.2
403 3.5 1 2.2
404 3.5 1.1 2.3
405 3.6 1.1 2.3
406 3.6 1.1 2.4
407 3.6 1.1 2.4
408 3.7 1.2 2.4
409 3.7 1.2 2.5
410 3.7 1.2 2.5
411 3.8 1.2 2.6
412 3.8 1.2 2.6
413 3.8 1.3 2.6
414 3.9 1.3 2.7
415 3.9 1.3 2.7
416 3.9 1.3 2.7
417 4 1.3 2.8
418 4 1.3 2.8
419 4.1 1.3 2.8
420 4.1 1.3 2.9
421 4.1 1.4 2.9
422 4.2 1.4 2.9
423 4.2 1.4 3
424 4.2 1.4 3
425 4.3 1.4 3
426 4.3 1.4 3
427 4.3 1.4 3
428 4.3 1.4 3
429 4.3 1.4 3.1
430 4.3 1.4 3.1
431 4.3 1.4 3.1
432 4.4 1.4 3.1
433 4.4 1.4 3.1
434 4.4 1.4 3.1
435 4.4 1.4 3.1
436 4.4 1.4 3.1
437 4.4 1.3 3.1
438 4.4 1.3 3.1
439 4.4 1.3 3.1
440 4.4 1.3 3.1
441 4.4 1.2 3.1
442 4.4 1.2 3
443 4.4 1.2 3
444 4.4 1.2 3
445 4.4 1.2 3
446 4.4 1.1 3
447 4.4 1.1 3
448 4.4 1.1 2.9
449 4.4 1.1 2.9
450 4.4 1 2.9
451 4.4 1 2.9
452 4.3 1 2.8
453 4.3 1 2.8
454 4.3 1 2.8
455 4.3 1 2.8
456 4.3 0.9 2.7
457 4.2 0.9 2.7
458 4.2 0.9 2.7
459 4.1 0.9 2.6
460 4.1 0.9 2.6
461 4.1 0.9 2.6
462 4 0.9 2.5
463 4 0.9 2.5
464 4 0.9 2.5
465 3.9 0.8 2.4
466 3.9 0.8 2.4
467 3.9 0.8 2.4
468 3.8 0.8 2.3
469 3.8 0.8 2.3
470 3.8 0.8 2.3
471 3.7 0.8 2.2
472 3.7 0.8 2.2
473 3.6 0.8 2.2
474 3.6 0.8 2.1
475 3.5 0.8 2.1
476 3.5 0.8 2.1
477 3.5 0.8 2.1
478 3.4 0.8 2.1
479 3.4 0.8 2
480 3.4 0.8 2
481 3.3 0.8 2
482 3.3 0.8 2
483 3.3 0.8 2
484 3.3 0.8 2
485 3.2 0.8 2
486 3.2 0.9 2
487 3.2 0.9 2
488 3.2 0.9 2
489 3.1 0.9 2
490 3.1 0.9 2
491 3.1 0.9 2
492 3.1 0.9 2
493 3.1 0.9 2
494 3 1 2
495 3 1 2
496 3 1 2
497 3 1 2
498 3 1 2
499 3 1 2
500 3 1 2
501 3 1 2.1
502 3 1.1 2.1
503 3 1.1 2.1
504 3 1.1 2.1
505 3 1.1 2.1
506 3 1.1 2.1
507 3 1.1 2.2
508 3 1.1 2.2
509 3 1.1 2.2
510 3.1 1.1 2.2
511 3.1 1.1 2.2
512 3.1 1.1 2.2
513 3.1 1.1 2.3
514 3.1 1.1 2.3
515 3.2 1.1 2.3
516 3.2 1 2.3
517 3.2 1 2.4
518 3.2 1 2.4
519 3.2 1 2.4
520 3.3 1 2.4
521 3.3 1 2.5
522 3.3 1 2.5
523 3.3 1 2.5
524 3.4 1 2.5
525 3.4 1 2.5
526 3.4 1 2.6
527 3.5 1 2.6
528 3.5 0.9 2.6
529 3.5 0.9 2.6
530 3.6 0.9 2.6
531 3.6 0.9 2.6
532 3.6 0.9 2.6
533 3.6 0.9 2.7
534 3.7 0.9 2.7
535 3.7 0.9 2.7
536 3.7 0.9 2.7
537 3.7 0.8 2.7
538 3.7 0.8 2.7
539 3.7 0.8 2.7
540 3.7 0.8 2.7
541 3.7 0.8 2.7
542 3.8 0.8 2.7
543 3.8 0.8 2.7
544 3.8 0.8 2.7
545 3.8 0.8 2.7
546 3.8 0.8 2.7
547 3.8 0.8 2.7
548 3.8 0.8 2.7
549 3.8 0.8 2.7
550 3.9 0.8 2.7
551 3.9 0.8 2.7
552 3.9 0.8 2.7
553 3.9 0.8 2.7
554 3.9 0.8 2.7
555 3.9 0.8 2.7
556 3.9 0.8 2.7
557 3.9 0.8 2.6
558 3.9 0.8 2.6
559 3.9 0.8 2.6
560 3.9 0.8 2.6
561 3.9 0.8 2.6
562 3.9 0.8 2.6
563 3.9 0.8 2.6
564 3.9 0.8 2.6
565 3.9 0.8 2.5
566 3.9 0.8 2.5
567 4 0.8 2.5
568 4 0.8 2.5
569 4 0.9 2.5
570 4 0.9 2.5
571 4 0.9 2.4
572 4 0.9 2.4
573 4 0.9 2.4
574 4 1 2.4
575 4 1 2.4
576 4 1 2.3
577 4 1 2.3
578 4 1 2.3
579 4 1 2.3
580 4 1.1 2.3
581 4 1.1 2.3
582 4 1.1 2.3
583 4 1.1 2.3
584 4 1.1 2.3
585 4 1.2 2.3
586 4 1.2 2.3
587 4 1.2 2.3
588 4 1.2 2.3
589 4.1 1.3 2.3
590 4.1 1.3 2.3
591 4.1 1.3 2.3
592 4.1 1.3 2.3
593 4.2 1.3 2.3
594 4.2 1.4 2.3
595 4.2 1.4 2.3
596 4.3 1.4 2.3
597 4.3 1.4 2.3
598 4.3 1.4 2.3
599 4.3 1.4 2.3
600 4.3 1.4 2.3
601 4.4 1.5 2.3
602 4.4 1.5 2.3
603 4.4 1.5 2.3
604 4.4 1.5 2.3
605 4.4 1.5 2.3
606 4.4 1.5 2.3
607 4.4 1.5 2.3
608 4.4 1.5 2.3
609 4.4 1.6 2.3
610 4.4 1.6 2.3
611 4.4 1.6 2.4
612 4.4 1.6 2.4
613 4.4 1.6 2.4
614 4.4 1.6 2.4
615 4.4 1.6 2.4
616 4.4 1.6 2.5
617 4.4 1.6 2.5
618 4.4 1.6 2.5
619 4.4 1.6 2.5
620 4.3 1.6 2.6
621 4.3 1.6 2.6
622 4.3 1.6 2.6
623 4.3 1.6 2.6
624 4.2 1.6 2.6
625 4.2 1.6 2.6
626 4.2 1.5 2.6
627 4.2 1.5 2.7
628 4.2 1.5 2.7
629 4.1 1.5 2.7
630 4.1 1.5 2.7
631 4.1 1.5 2.7
632 4.1 1.5 2.7
633 4.1 1.5 2.7
634 4.1 1.5 2.8
635 4.1 1.5 2.8
636 4 1.5 2.8
637 4 1.5 2.8
638 4 1.4 2.8
639 4 1.4 2.8
640 3.9 1.4 2.8
641 3.9 1.4 2.8
642 3.9 1.4 2.7
643 3.8 1.4 2.7
644 3.8 1.4 2.7
645 3.7 1.3 2.8
646 3.7 1.3 2.8
647 3.6 1.3 2.8
648 3.6 1.3 2.8
649 3.6 1.3 2.8
650 3.5 1.3 2.8
651 3.5 1.2 2.8
652 3.5 1.2 2.8
653 3.4 1.2 2.8
654 3.4 1.2 2.8
655 3.4 1.2 2.8
656 3.4 1.2 2.8
657 3.4 1.2 2.8
658 3.3 1.1 2.9
659 3.3 1.1 2.9
660 3.3 1.1 2.9
661 3.3 1.1 2.9
662 3.3 1.1 2.9
663 3.3 1.1 2.9
664 3.3 1.1 2.9
665 3.2 1 2.8
666 3.2 1 2.8
667 3.2 1 2.8
668 3.2 1 2.8
669 3.2 1 2.8
670 3.2 1 2.8
671 3.3 1 2.8
672 3.3 1 2.8
673 3.3 1 2.8
674 3.3 1 2.8
675 3.3 1 2.8
676 3.3 0.9 2.8
677 3.3 0.9 2.8
678 3.3 0.9 2.8
679 3.3 0.9 2.7
680 3.4 0.9 2.7
681 3.4 0.9 2.7
682 3.4 0.9 2.7
683 3.4 0.9 2.7
684 3.4 0.9 2.7
685 3.4 0.9 2.7
686 3.4 0.9 2.7
687 3.4 0.8 2.7
688 3.4 0.8 2.7
689 3.5 0.8 2.7
690 3.5 0.8 2.7
691 3.5 0.8 2.7
692 3.5 0.8 2.7
693 3.6 0.8 2.7
694 3.6 0.8 2.7
695 3.6 0.8 2.7
696 3.7 0.8 2.7
697 3.7 0.8 2.7
698 3.7 0.8 2.7
699 3.8 0.8 2.7
700 3.8 0.8 2.7
701 3.8 0.7 2.7
702 3.9 0.7 2.7
703 3.9 0.7 2.7
704 3.9 0.7 2.7
705 3.9 0.7 2.7
706 4 0.7 2.7
707 4 0.7 2.7
708 4 0.7 2.7
709 4 0.7 2.7
710 4.1 0.7 2.7
711 4.1 0.7 2.7
712 4.1 0.7 2.6
713 4.1 0.7 2.6
714 4.2 0.7 2.6
715 4.2 0.7 2.6
716 4.2 0.7 2.6
717 4.3 0.7 2.7
718 4.3 0.7 2.7
719 4.3 0.7 2.7
720 4.4 0.7 2.7
721 4.4 0.7 2.7
722 4.4 0.7 2.7
723 4.4 0.7 2.7
724 4.5 0.7 2.7
725 4.5 0.7 2.7
726 4.5 0.7 2.7
727 4.5 0.7 2.7
728 4.6 0.7 2.7
729 4.6 0.7 2.7
730 4.6 0.7 2.7
731 4.6 0.7 2.7
732 4.7 0.7 2.7
733 4.7 0.7 2.7
734 4.7 0.7 2.7
735 4.7 0.7 2.7
736 4.8 0.8 2.7
737 4.8 0.8 2.7
738 4.8 0.8 2.7
739 4.8 0.8 2.7
740 4.8 0.8 2.7
741 4.8 0.8 2.7
742 4.8 0.8 2.7
743 4.8 0.8 2.7
744 4.8 0.8 2.7
745 4.8 0.8 2.6
746 4.8 0.8 2.6
747 4.8 0.9 2.6
748 4.8 0.9 2.6
749 4.8 0.9 2.6
750 4.8 0.9 2.5
751 4.8 0.9 2.5
752 4.8 0.9 2.5
753 4.8 0.9 2.5
754 4.8 1 2.5
755 4.8 1 2.5
756 4.8 1 2.5
757 4.8 1 2.5
758 4.7 1 2.4
759 4.7 1 2.4
760 4.7 1.1 2.4
761 4.7 1.1 2.4
762 4.7 1.1 2.4
763 4.7 1.1 2.4
764 4.7 1.1 2.4
765 4.7 1.2 2.4
766 4.6 1.2 2.4
767 4.6 1.2 2.4
768 4.6 1.2 2.4
769 4.6 1.2 2.4
770 4.5 1.2 2.4
771 4.5 1.2 2.3
772 4.5 1.3 2.3
773 4.5 1.3 2.3
774 4.4 1.3 2.3
775 4.4 1.3 2.3
776 4.4 1.3 2.3
777 4.4 1.3 2.2
778 4.3 1.3 2.2
779 4.3 1.3 2.2
780 4.3 1.4 2.2
781 4.2 1.4 2.2
782 4.2 1.4 2.2
783 4.2 1.4 2.2
784 4.2 1.4 2.2
785 4.1 1.4 2.2
786 4.1 1.4 2.2
787 4.1 1.4 2.2
788 4 1.4 2.2
789 4 1.4 2.2
790 4 1.4 2.2
791 4 1.4 2.2
792 3.9 1.4 2.2
793 3.9 1.4 2.2
794 3.9 1.4 2.2
795 3.9 1.4 2.3
796 3.8 1.4 2.3
797 3.8 1.4 2.3
798 3.8 1.4 2.3
799 3.8 1.4 2.3
800 3.7 1.4 2.3
801 3.7 1.4 2.3
802 3.7 1.4 2.4
803 3.7 1.4 2.4
804 3.7 1.4 2.4
805 3.7 1.4 2.4
806 3.6 1.4 2.4
807 3.6 1.4 2.4
808 3.6 1.4 2.4
809 3.6 1.4 2.4
810 3.5 1.4 2.4
811 3.5 1.4 2.4
812 3.5 1.3 2.4
813 3.4 1.3 2.4
814 3.4 1.3 2.4
815 3.4 1.3 2.4
816 3.3 1.3 2.4
817 3.3 1.3 2.5
818 3.3 1.3 2.5
819 3.3 1.3 2.5
820 3.2 1.3 2.5
821 3.2 1.3 2.5
822 3.2 1.3 2.6
823 3.2 1.3 2.6
824 3.1 1.3 2.6
825 3.1 1.3 2.6
826 3.1 1.3 2.6
827 3.1 1.3 2.7
828 3 1.3 2.7
829 3 1.3 2.7
830 3 1.3 2.7
831 3 1.3 2.8
832 3 1.3 2.8
833 3 1.3 2.8
834 2.9 1.3 2.8
835 2.9 1.3 2.8
836 2.9 1.3 2.8
837 2.9 1.3 2.9
838 2.9 1.3 2.9
839 2.8 1.3 2.9
840 2.8 1.3 2.9
841 2.8 1.3 2.9
842 2.8 1.3 2.9
843 2.8 1.3 2.9
844 2.7 1.3 3
845 2.7 1.3 3
846 2.7 1.3 3
847 2.7 1.3 3
848 2.7 1.3 3
849 2.7 1.3 3
850 2.7 1.3 3
851 2.7 1.2 3
852 2.7 1.2 3
853 2.7 1.2 3.1
854 2.7 1.2 3.1
855 2.7 1.2 3.1
856 2.7 1.2 3.1
857 2.7 1.2 3.1
858 2.7 1.2 3.1
859 2.7 1.2 3.1
860 2.7 1.2 3.1
861 2.7 1.2 3.1
862 2.8 1.2 3.1
863 2.8 1.2 3
864 2.8 1.2 3
865 2.8 1.2 3
866 2.9 1.2 3
867 2.9 1.2 3
868 2.9 1.2 3
869 3 1.2 3
870 3 1.2 3
871 3 1.2 2.9
872 3 1.1 2.9
873 3.1 1.1 2.9
874 3.1 1.1 2.9
875 3.1 1.1 2.9
876 3.2 1.1 2.9
877 3.2 1.1 2.9
878 3.2 1.1 2.9
879 3.2 1 2.8
880 3.3 1 2.8
881 3.3 1 2.8
882 3.3 1 2.8
883 3.3 1 2.8
884 3.4 1 2.8
885 3.4 1 2.8
886 3.5 1 2.8
887 3.5 1 2.7
888 3.5 0.9 2.7
889 3.6 0.9 2.7
890 3.6 0.9 2.7
891 3.7 0.9 2.6
892 3.7 0.9 2.6
893 3.7 0.9 2.6
894 3.8 0.9 2.6
895 3.8 0.9 2.5
896 3.8 0.9 2.5
897 3.9 0.9 2.5
898 3.9 0.9 2.5
899 3.9 0.9 2.5
900 3.9 0.9 2.5
Accepted Answer
Malay Agarwal
on 19 Sep 2024
Edited: Malay Agarwal
on 19 Sep 2024
To plot the chromaticity diagram using the photoluminescence data you've provided, you'll have to calculate the tristimulus values X, Y and Z for each of the samples , and .
To calculate the tristimulus values, you need to integrate the product of the spectral power distribution (SPD) with the respective color matching function with respect to the wavelength. For example, to calculate the X tristimulus value, you can use the following:
Here, is the spectral power distribution value for wavelength λ and is the value of the color matching function at that wavelength for the x component. The integration can be performed by using the trapz function in MATLAB since you have numerical points for both the values.
Once you have the tristimulus values, you can calculate the coordinates in the sRGB chromaticity space using the following formulae:
Refer to the following resource for more information on the equations: https://en.wikipedia.org/wiki/CIE_1931_color_space.
Once you have the coordinates for each sample, you can use the plotChromaticity function to plot an empty sRGB chromaticity diagram and then use the hold command to add the three chromaticity coordinates to your plot.
I have attached an example (using CIE 1931 color matching functions) in the file "cieplot.m" to the answer, which produces the following plot:
cieplot
Please refer to the following resources for more information:
- plotChromaticity documentation - https://www.mathworks.com/help/images/ref/plotchromaticity.html
- trapz documentation - https://www.mathworks.com/help/matlab/ref/trapz.html
- hold documentation - https://www.mathworks.com/help/matlab/ref/hold.html
Hope this helps!
3 Comments
Malay Agarwal
on 20 Sep 2024
Edited: Malay Agarwal
on 20 Sep 2024
For CIE 1976, you can use the ColorSpace name-value argument with the value "uv" to switch the plot to the u'v'L color space. To calculate the coordinates, you can use the following equations, where x and y are the coordinates in the CIE 1931 colorspace:
You can then plot these points for each sample similar to the example I have provided.
For example:
x1 = 0.3418;
y1 = 0.3204;
u1 = 4*x1 / (-2*x1 + 12 * y1 + 3);
v1 = 9*y1 / (-2*x1 + 12 * y1 + 3);
plotChromaticity("ColorSpace", "uv");
hold on;
plot(u1, v1, 'rx', 'MarkerSize', 8, 'LineWidth', 2);
hold off;
Refer to the following resource for more information on the equations: https://en.wikipedia.org/wiki/CIELUV#The_forward_transformation
More Answers (1)
Mushtaq Al-Jubbori
on 19 Sep 2024
2 Comments
Malay Agarwal
on 23 Sep 2024
The plotChromaticity function was introduced in MATLAB R2017b and will not work on versions before that. You will have to figure out how to plot the color spectrum using your custom implementation.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!