loading and training an existing network.
2 views (last 30 days)
Show older comments
I am trying define a network, then train it in multiple sessions. The problem is that I can't get the load or read of the network to work in the second session. The code is:
layers = [ ...
sequenceInputLayer(270)
bilstmLayer(numHiddenUnits,OutputMode="last")
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]
options = trainingOptions("adam", ...
InitialLearnRate=0.002,...
MaxEpochs=15, ...
Shuffle="never", ...
GradientThreshold=1, ...
Verbose=false, ...
ExecutionEnvironment="gpu", ...
Plots="training-progress");
clabels=categorical(labels);
numLables=numel(clabels)
load("savednet.mat","layers");
net = trainNetwork(data,clabels,layers,options);
save("savednet","net");
I have tried many variations of the load command and it always gives an error on the second argument:
Warning: Variable 'layers' not found.
Exactly what should that look like and then how should it be used as input to the trainNetwork routine?
7 Comments
Walter Roberson
on 7 Oct 2024
Probably
net1 = trainnet(data,clabels,net1,"crossentropy",options);
Accepted Answer
Matt J
on 7 Oct 2024
previous = load("savednet","net","layers");
net = trainNetwork(data,clabels,previous.net,options);
1 Comment
More Answers (0)
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!