Integrating multivariate Gaussian pdf in 4 dimensions

3 views (last 30 days)
I have been trying to integrate a multivariate Gaussian pdf in 4 dimensions, but got the error message.
Any help would be appreciated.
Thanks!
f = @(x,y,z,w) mvnpdf([x y z w],zeros(1,4),eye(4));
val = integral2(@(x,y)arrayfun(@(x,y)integral2(@(z,w)f(x,y,z,w),-inf,0,-inf,0),x,y),-inf,0,-inf,0)
Error using mvnpdf (line 67)
X and MU must have the same number of columns.

Error in solution>@(x,y,z,w)mvnpdf([x,y,z,w],zeros(1,4),eye(4)) (line 1)
f = @(x,y,z,w) mvnpdf([x y z w],zeros(1,4),eye(4));

Error in solution>@(z,w)f(x,y,z,w) (line 2)
val = integral2(@(x,y)arrayfun(@(x,y)integral2(@(z,w)f(x,y,z,w),-inf,0,-inf,0),x,y),-inf,0,-inf,0)

Error in integral2Calc>@(y)fun(xi*ones(size(y)),y) (line 18)
@(y)fun(xi*ones(size(y)),y),y1i,y2i,opstruct.integralOptions), ...

Error in integralCalc>iterateScalarValued (line 334)
fx = FUN(t);

Error in integralCalc>vadapt (line 148)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen, ...

Error in integralCalc (line 99)
[q,errbnd] = vadapt(vfunB,interval, ...

Error in integral2Calc>@(xi,y1i,y2i)integralCalc(@(y)fun(xi*ones(size(y)),y),y1i,y2i,opstruct.integralOptions) (line 17)
innerintegral = @(x)arrayfun(@(xi,y1i,y2i)integralCalc( ...

Error in integral2Calc>@(x)arrayfun(@(xi,y1i,y2i)integralCalc(@(y)fun(xi*ones(size(y)),y),y1i,y2i,opstruct.integralOptions),x,ymin(x),ymax(x)) (line 17)
innerintegral = @(x)arrayfun(@(xi,y1i,y2i)integralCalc( ...

Error in integralCalc>iterateScalarValued (line 334)
fx = FUN(t);

Error in integralCalc>vadapt (line 148)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen, ...

Error in integralCalc (line 99)
[q,errbnd] = vadapt(vfunB,interval, ...

Error in integral2Calc>integral2i (line 20)
[q,errbnd] = integralCalc(innerintegral,xmin,xmax,opstruct.integralOptions);

Error in integral2Calc (line 7)
[q,errbnd] = integral2i(fun,xmin,xmax,ymin,ymax,optionstruct);

Error in integral2 (line 105)
Q = integral2Calc(fun,xmin,xmax,yminfun,ymaxfun,opstruct);

Error in solution>@(x,y)integral2(@(z,w)f(x,y,z,w),-inf,0,-inf,0) (line 2)
val = integral2(@(x,y)arrayfun(@(x,y)integral2(@(z,w)f(x,y,z,w),-inf,0,-inf,0),x,y),-inf,0,-inf,0)

Error in solution>@(x,y)arrayfun(@(x,y)integral2(@(z,w)f(x,y,z,w),-inf,0,-inf,0),x,y) (line 2)
val = integral2(@(x,y)arrayfun(@(x,y)integral2(@(z,w)f(x,y,z,w),-inf,0,-inf,0),x,y),-inf,0,-inf,0)

Error in integral2Calc>@(y)fun(xi*ones(size(y)),y) (line 18)
@(y)fun(xi*ones(size(y)),y),y1i,y2i,opstruct.integralOptions), ...

Error in integralCalc>iterateScalarValued (line 334)
fx = FUN(t);

Error in integralCalc>vadapt (line 148)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen, ...

Error in integralCalc (line 99)
[q,errbnd] = vadapt(vfunB,interval, ...

Error in integral2Calc>@(xi,y1i,y2i)integralCalc(@(y)fun(xi*ones(size(y)),y),y1i,y2i,opstruct.integralOptions) (line 17)
innerintegral = @(x)arrayfun(@(xi,y1i,y2i)integralCalc( ...

Error in integral2Calc>@(x)arrayfun(@(xi,y1i,y2i)integralCalc(@(y)fun(xi*ones(size(y)),y),y1i,y2i,opstruct.integralOptions),x,ymin(x),ymax(x)) (line 17)
innerintegral = @(x)arrayfun(@(xi,y1i,y2i)integralCalc( ...

Error in integralCalc>iterateScalarValued (line 334)
fx = FUN(t);

Error in integralCalc>vadapt (line 148)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen, ...

Error in integralCalc (line 99)
[q,errbnd] = vadapt(vfunB,interval, ...

Error in integral2Calc>integral2i (line 20)
[q,errbnd] = integralCalc(innerintegral,xmin,xmax,opstruct.integralOptions);

Error in integral2Calc (line 7)
[q,errbnd] = integral2i(fun,xmin,xmax,ymin,ymax,optionstruct);

Error in integral2 (line 105)
Q = integral2Calc(fun,xmin,xmax,yminfun,ymaxfun,opstruct);

Accepted Answer

Torsten
Torsten on 10 Oct 2024
Edited: Torsten on 10 Oct 2024
Use "mvncdf":
If your function is more complicated than posted, try "integralN":
But it will usually be less precise than "mvncdf".
f = @(x,y,z,w) mvnpdf([x y z w],zeros(1,4),eye(4));
val1 = mvncdf(zeros(1,4),zeros(1,4),eye(4))
val1 = 0.0625
val2 = integralN(@(x,y,z,w)arrayfun(f,x,y,z,w),-Inf,0,-Inf,0,-Inf,0,-Inf,0)

More Answers (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!