How plot the systems with perturbation term?
8 views (last 30 days)
Show older comments
is been a while i am searching for find a good option of ploting in my search i found some usefull one but i need to seperate them becuase background size of picture is not what i want and i want them solo and if there is any other better option of plotting the system please provide it here thanks
de1 = diff(u(t), t) == v(t);
de2 = diff(v(t), t) == -K(1) * u(t) ^ 3 + K(2) * u(t) + epsilon * sin(theta * t);
5 Comments
Torsten
on 29 Jun 2025
Something like this ?
% Chaotic System Visualization - Forced Duffing Oscillator
% Based on: du/dt = v, dv/dt = -K1*u^3 + K2*u + epsilon*sin(theta*t)
%% Parameters (adjust these to explore different chaotic behaviors)
K1 = 1.0; % Cubic nonlinearity coefficient
K2 = -1.0; % Linear restoring force coefficient
epsilon = 1.0; % Forcing amplitude
theta = 1.2; % Forcing frequency
f = @(t,y)[y(2);-K1*y(1)^3+K2*y(1)+epsilon*sin(theta*t)];
tspan = [0 100];
y0 = [1;0];
options = odeset('RelTol',1e-10,'AbsTol',1e-10);
[T,Y] = ode45(f,tspan,y0);
plot(Y(:,1),Y(:,2))
Answers (2)
Sulaymon Eshkabilov
on 29 Jun 2025
You can work around what Torsten suggested to enhance the resolution of simulation results and get the simulation for other values of epsilon, e.g.:
% Chaotic System Visualization - Forced Duffing Oscillator
% Based on: du/dt = v, dv/dt = -K1*u^3 + K2*u + epsilon*sin(theta*t)
%% Parameters (adjust these to explore different chaotic behaviors)
K1 = 1.0; % Cubic nonlinearity coefficient
K2 = -1.0; % Linear restoring force coefficient
epsilon = 0.5:.5:2; % Forcing amplitude
theta = 1.2; % Forcing frequency
LT = {'r-'; 'g-'; 'b-'; 'm-'}; % Line color spec
for ii = 1:numel(epsilon)
f = @(t,y)[y(2);-K1*y(1)^3+K2*y(1)+epsilon(ii)*sin(theta*t)];
tspan = linspace(0,100, 1e5);
y0 = [1;0];
options = odeset('RelTol',1e-10,'AbsTol',1e-10);
[T,Y] = ode45(f,tspan,y0);
figure(ii)
plot(Y(:,1),Y(:,2), LT{ii})
title(['Phase portrait: (\epsilon = ' num2str(epsilon(ii)) ')'])
grid on
xlabel('u')
ylabel('v')
end
Sulaymon Eshkabilov
on 29 Jun 2025
Here is how 3D plot can be generated, e.g.:
% Chaotic System Visualization - Forced Duffing Oscillator
% Based on: du/dt = v, dv/dt = -K1*u^3 + K2*u + epsilon*sin(theta*t)
%% Parameters (adjust these to explore different chaotic behaviors)
K1 = 1.0; % Cubic nonlinearity coefficient
K2 = -1.0; % Linear restoring force coefficient
epsilon = 0.5:.5:2; % Forcing amplitude
theta = 1.2; % Forcing frequency
LT = {'r-'; 'g-'; 'b-'; 'm-'}; % Line color spec
for ii = 1:numel(epsilon)
f = @(t,y)[y(2);-K1*y(1)^3+K2*y(1)+epsilon(ii)*sin(theta*t)];
tspan = linspace(0,100, 1e5);
y0 = [1;0];
options = odeset('RelTol',1e-10,'AbsTol',1e-10);
[Time,Y] = ode45(f,tspan,y0);
figure(ii)
plot3(Time, Y(:,1),Y(:,2), LT{ii})
title(['Phase portrait: (\epsilon = ' num2str(epsilon(ii)) ')'])
grid on
xlabel('Time')
ylabel('u')
zlabel('v')
end
2 Comments
Sulaymon Eshkabilov
on 29 Jun 2025
Here are some starting points on a Poincare map:
K1 = 1.0; % Cubic nonlinearity coefficient
K2 = -1.0; % Linear restoring force coefficient
epsilon = 0.5:.5:2; % Forcing amplitude
theta = 1.2; % Forcing frequency
LT = {'ro'; 'g*'; 'bd'; 'mp'}; % Marker color for Poincare maps
T = 2*pi/theta; % Forcing period
nPeriods = 300; % Number of stroboscopic samples (adjust for clarity)
for ii = 1:numel(epsilon)
f = @(t,y)[y(2); -K1*y(1)^3 + K2*y(1) + epsilon(ii)*sin(theta*t)];
tspan = linspace(0, nPeriods*T, 1e5); % Simulate multiple periods
y0 = [1; 0];
options = odeset('RelTol',1e-10,'AbsTol',1e-10);
[Time,Y] = ode45(f, tspan, y0, options);
% Poincare section at multiples of forcing period T:
poincare_points = [];
t_samples = (0:nPeriods-1) * T;
for k = 1:length(t_samples)
% Find closest time index:
[~, idx] = min(abs(Time - t_samples(k)));
poincare_points = [poincare_points; Y(idx,1), Y(idx,2)];
end
% Plotting Poincare map simulation results:
figure(ii)
plot(poincare_points(:,1), poincare_points(:,2), LT{ii}, 'MarkerSize', 6)
title(['Poincaré Map (\epsilon = ' num2str(epsilon(ii)) ')'])
xlabel('u'); ylabel('v');
axis tight
grid on
end
See Also
Categories
Find more on Particle & Nuclear Physics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!