syms P121 P131 P151 P122 P132 P152 cosd sind cosdphi12over2 cosdphi13over2 cosdphi15over2 sindphi12over2 sindphi13over2 sindphi15over2 P121raised_to2 P122raised_to2 P131raised_to2 P132raised_to2 P151raised_to2 P152raised_to2 x y
M4=[P121*cosdphi12over2-y*cosdphi12over2+P122*sindphi12over2+sindphi12over2*x P122*cosdphi12over2+x*cosdphi12over2-P121*sindphi12over2+y*sindphi12over2 P121raised_to2*sindphi12over2+P122raised_to2*sindphi12over2-P121*cosdphi12over2-P122*cosdphi12over2*y+sindphi12over2*P122*x-sindphi12over2*P121*y;
P131*cosdphi13over2-y*cosdphi13over2+P132*sindphi13over2+sindphi13over2*x P132*cosdphi13over2+x*cosdphi13over2-P131*sindphi13over2+y*sindphi13over2 P131raised_to2*sindphi13over2+P132raised_to2*sindphi13over2-P131*cosdphi13over2-P132*cosdphi13over2*y+sindphi13over2*P132*x-sindphi13over2*P131*y;
P151*cosdphi15over2-y*cosdphi15over2+P152*sindphi15over2+sindphi15over2*x P152*cosdphi15over2+x*cosdphi15over2-P151*sindphi15over2+y*sindphi15over2 P151raised_to2*sindphi15over2+P152raised_to2*sindphi15over2-P151*cosdphi15over2-P152*cosdphi15over2*y+sindphi15over2*P152*x-sindphi15over2*P151*y]
P121*cosdphi12over2*cosdphi13over2*sindphi15over2*x^2 - P121*cosdphi12over2*cosdphi15over2*sindphi13over2*x^2 - P131*cosdphi12over2*cosdphi13over2*sindphi15over2*x^2 + P131*cosdphi13over2*cosdphi15over2*sindphi12over2*x^2 + P151*cosdphi12over2*cosdphi15over2*sindphi13over2*x^2 - P151*cosdphi13over2*cosdphi15over2*sindphi12over2*x^2 + P121*cosdphi12over2*cosdphi13over2*sindphi15over2*y^2 - P121*cosdphi12over2*cosdphi15over2*sindphi13over2*y^2 + P122*cosdphi12over2*cosdphi13over2*sindphi15over2*y^3 - P122*cosdphi12over2*cosdphi15over2*sindphi13over2*y^3 - P131*cosdphi12over2*cosdphi13over2*sindphi15over2*y^2 + P131*cosdphi13over2*cosdphi15over2*sindphi12over2*y^2 - P132*cosdphi12over2*cosdphi13over2*sindphi15over2*y^3 + P132*cosdphi13over2*cosdphi15over2*sindphi12over2*y^3 + P151*cosdphi12over2*cosdphi15over2*sindphi13over2*y^2 - P151*cosdphi13over2*cosdphi15over2*sindphi12over2*y^2 + P152*cosdphi12over2*cosdphi15over2*sindphi13over2*y^3 - P152*cosdphi13over2*cosdphi15over2*sindphi12over2*y^3 - P122*cosdphi13over2*sindphi12over2*sindphi15over2*x^3 + P122*cosdphi15over2*sindphi12over2*sindphi13over2*x^3 + P132*cosdphi12over2*sindphi13over2*sindphi15over2*x^3 - P132*cosdphi15over2*sindphi12over2*sindphi13over2*x^3 - P152*cosdphi12over2*sindphi13over2*sindphi15over2*x^3 + P152*cosdphi13over2*sindphi12over2*sindphi15over2*x^3 - P121raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x^2 + P121raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x^2 - P122raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x^2 + P122raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x^2 + P131raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x^2 - P131raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x^2 + P132raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x^2 - P132raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x^2 - P151raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x^2 + P151raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x^2 - P152raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x^2 + P152raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x^2 + P121*cosdphi13over2*sindphi12over2*sindphi15over2*y^3 - P121*cosdphi15over2*sindphi12over2*sindphi13over2*y^3 - P131*cosdphi12over2*sindphi13over2*sindphi15over2*y^3 + P131*cosdphi15over2*sindphi12over2*sindphi13over2*y^3 + P151*cosdphi12over2*sindphi13over2*sindphi15over2*y^3 - P151*cosdphi13over2*sindphi12over2*sindphi15over2*y^3 - P121raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y^2 + P121raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y^2 - P122raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y^2 + P122raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y^2 + P131raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y^2 - P131raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y^2 + P132raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y^2 - P132raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y^2 - P151raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y^2 + P151raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y^2 - P152raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y^2 + P152raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y^2 - P121*P132*cosdphi12over2*cosdphi15over2*sindphi13over2*x^2 + P122*P131*cosdphi13over2*cosdphi15over2*sindphi12over2*x^2 + P121*P152*cosdphi12over2*cosdphi13over2*sindphi15over2*x^2 - P122*P151*cosdphi13over2*cosdphi15over2*sindphi12over2*x^2 - P131*P152*cosdphi12over2*cosdphi13over2*sindphi15over2*x^2 + P132*P151*cosdphi12over2*cosdphi15over2*sindphi13over2*x^2 + P121*P132*cosdphi12over2*cosdphi13over2*sindphi15over2*y^2 - 2*P121*P132*cosdphi13over2*cosdphi15over2*sindphi12over2*y^2 - P122*P131*cosdphi12over2*cosdphi13over2*sindphi15over2*y^2 + 2*P122*P131*cosdphi12over2*cosdphi15over2*sindphi13over2*y^2 - P121*P152*cosdphi12over2*cosdphi15over2*sindphi13over2*y^2 + 2*P121*P152*cosdphi13over2*cosdphi15over2*sindphi12over2*y^2 - 2*P122*P151*cosdphi12over2*cosdphi13over2*sindphi15over2*y^2 + P122*P151*cosdphi12over2*cosdphi15over2*sindphi13over2*y^2 - 2*P131*P152*cosdphi12over2*cosdphi15over2*sindphi13over2*y^2 + P131*P152*cosdphi13over2*cosdphi15over2*sindphi12over2*y^2 + 2*P132*P151*cosdphi12over2*cosdphi13over2*sindphi15over2*y^2 - P132*P151*cosdphi13over2*cosdphi15over2*sindphi12over2*y^2 + P122*P132*cosdphi12over2*sindphi13over2*sindphi15over2*x^2 - P122*P132*cosdphi13over2*sindphi12over2*sindphi15over2*x^2 - P122*P152*cosdphi12over2*sindphi13over2*sindphi15over2*x^2 + P122*P152*cosdphi15over2*sindphi12over2*sindphi13over2*x^2 + P132*P152*cosdphi13over2*sindphi12over2*sindphi15over2*x^2 - P132*P152*cosdphi15over2*sindphi12over2*sindphi13over2*x^2 + P121*P131*cosdphi12over2*sindphi13over2*sindphi15over2*y^2 - P121*P131*cosdphi13over2*sindphi12over2*sindphi15over2*y^2 - P122*P132*cosdphi12over2*sindphi13over2*sindphi15over2*y^2 + P122*P132*cosdphi13over2*sindphi12over2*sindphi15over2*y^2 - P121*P151*cosdphi12over2*sindphi13over2*sindphi15over2*y^2 + P121*P151*cosdphi15over2*sindphi12over2*sindphi13over2*y^2 + P122*P152*cosdphi12over2*sindphi13over2*sindphi15over2*y^2 - P122*P152*cosdphi15over2*sindphi12over2*sindphi13over2*y^2 + P131*P151*cosdphi13over2*sindphi12over2*sindphi15over2*y^2 - P131*P151*cosdphi15over2*sindphi12over2*sindphi13over2*y^2 - P132*P152*cosdphi13over2*sindphi12over2*sindphi15over2*y^2 + P132*P152*cosdphi15over2*sindphi12over2*sindphi13over2*y^2 - P121*P132*sindphi12over2*sindphi13over2*sindphi15over2*x^2 + P122*P131*sindphi12over2*sindphi13over2*sindphi15over2*x^2 + P121*P152*sindphi12over2*sindphi13over2*sindphi15over2*x^2 - P122*P151*sindphi12over2*sindphi13over2*sindphi15over2*x^2 - P131*P152*sindphi12over2*sindphi13over2*sindphi15over2*x^2 + P132*P151*sindphi12over2*sindphi13over2*sindphi15over2*x^2 - P121*P132*sindphi12over2*sindphi13over2*sindphi15over2*y^2 + P122*P131*sindphi12over2*sindphi13over2*sindphi15over2*y^2 + P121*P152*sindphi12over2*sindphi13over2*sindphi15over2*y^2 - P122*P151*sindphi12over2*sindphi13over2*sindphi15over2*y^2 - P131*P152*sindphi12over2*sindphi13over2*sindphi15over2*y^2 + P132*P151*sindphi12over2*sindphi13over2*sindphi15over2*y^2 + P122*cosdphi12over2*cosdphi13over2*sindphi15over2*x^2*y - P122*cosdphi12over2*cosdphi15over2*sindphi13over2*x^2*y - P132*cosdphi12over2*cosdphi13over2*sindphi15over2*x^2*y + P132*cosdphi13over2*cosdphi15over2*sindphi12over2*x^2*y + P152*cosdphi12over2*cosdphi15over2*sindphi13over2*x^2*y - P152*cosdphi13over2*cosdphi15over2*sindphi12over2*x^2*y + P121*cosdphi13over2*sindphi12over2*sindphi15over2*x^2*y - P121*cosdphi15over2*sindphi12over2*sindphi13over2*x^2*y - P122*cosdphi13over2*sindphi12over2*sindphi15over2*x*y^2 + P122*cosdphi15over2*sindphi12over2*sindphi13over2*x*y^2 - P131*cosdphi12over2*sindphi13over2*sindphi15over2*x^2*y + P131*cosdphi15over2*sindphi12over2*sindphi13over2*x^2*y + P132*cosdphi12over2*sindphi13over2*sindphi15over2*x*y^2 - P132*cosdphi15over2*sindphi12over2*sindphi13over2*x*y^2 + P151*cosdphi12over2*sindphi13over2*sindphi15over2*x^2*y - P151*cosdphi13over2*sindphi12over2*sindphi15over2*x^2*y - P152*cosdphi12over2*sindphi13over2*sindphi15over2*x*y^2 + P152*cosdphi13over2*sindphi12over2*sindphi15over2*x*y^2 + P121*P132*P152*cosdphi12over2*cosdphi13over2*sindphi15over2 - P121*P132*P152*cosdphi12over2*cosdphi15over2*sindphi13over2 - P122*P131*P152*cosdphi12over2*cosdphi13over2*sindphi15over2 + P122*P131*P152*cosdphi13over2*cosdphi15over2*sindphi12over2 + P122*P132*P151*cosdphi12over2*cosdphi15over2*sindphi13over2 - P122*P132*P151*cosdphi13over2*cosdphi15over2*sindphi12over2 + P131*P152*P121raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2 - P132*P151*P121raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2 + P131*P152*P122raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2 - P132*P151*P122raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2 - P121*P152*P131raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2 + P122*P151*P131raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2 - P121*P152*P132raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2 + P122*P151*P132raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2 + P121*P132*P151raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2 - P122*P131*P151raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2 + P121*P132*P152raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2 - P122*P131*P152raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2 - P121*P131*P152*cosdphi12over2*sindphi13over2*sindphi15over2 + P121*P131*P152*cosdphi13over2*sindphi12over2*sindphi15over2 + P121*P132*P151*cosdphi12over2*sindphi13over2*sindphi15over2 - P121*P132*P151*cosdphi15over2*sindphi12over2*sindphi13over2 - P122*P131*P151*cosdphi13over2*sindphi12over2*sindphi15over2 + P122*P131*P151*cosdphi15over2*sindphi12over2*sindphi13over2 - P131*P151*P121raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2 + P131*P151*P121raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2 - P132*P152*P121raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2 + P132*P152*P121raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2 - P131*P151*P122raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2 + P131*P151*P122raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2 - P132*P152*P122raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2 + P132*P152*P122raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2 + P121*P151*P131raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2 - P121*P151*P131raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2 + P122*P152*P131raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2 - P122*P152*P131raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2 + P121*P151*P132raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2 - P121*P151*P132raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2 + P122*P152*P132raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2 - P122*P152*P132raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2 - P121*P131*P151raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2 + P121*P131*P151raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2 - P122*P132*P151raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2 + P122*P132*P151raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2 - P121*P131*P152raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2 + P121*P131*P152raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2 - P122*P132*P152raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2 + P122*P132*P152raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2 - P121*P132*cosdphi12over2*cosdphi13over2*cosdphi15over2*y + P122*P131*cosdphi12over2*cosdphi13over2*cosdphi15over2*y + P121*P152*cosdphi12over2*cosdphi13over2*cosdphi15over2*y - P122*P151*cosdphi12over2*cosdphi13over2*cosdphi15over2*y - P131*P152*cosdphi12over2*cosdphi13over2*cosdphi15over2*y + P132*P151*cosdphi12over2*cosdphi13over2*cosdphi15over2*y + P131*P152*P121raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 - P132*P151*P121raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 + P131*P152*P122raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 - P132*P151*P122raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 - P121*P152*P131raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 + P122*P151*P131raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 - P121*P152*P132raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 + P122*P151*P132raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 + P121*P132*P151raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 - P122*P131*P151raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 + P121*P132*P152raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 - P122*P131*P152raised_to2*sindphi12over2*sindphi13over2*sindphi15over2 + P121*P132*cosdphi12over2*cosdphi13over2*sindphi15over2*x - P121*P132*cosdphi12over2*cosdphi15over2*sindphi13over2*x - P122*P131*cosdphi12over2*cosdphi13over2*sindphi15over2*x + P122*P131*cosdphi13over2*cosdphi15over2*sindphi12over2*x + P121*P152*cosdphi12over2*cosdphi13over2*sindphi15over2*x - P121*P152*cosdphi12over2*cosdphi15over2*sindphi13over2*x + P122*P151*cosdphi12over2*cosdphi15over2*sindphi13over2*x - P122*P151*cosdphi13over2*cosdphi15over2*sindphi12over2*x - P131*P152*cosdphi12over2*cosdphi13over2*sindphi15over2*x + P131*P152*cosdphi13over2*cosdphi15over2*sindphi12over2*x + P132*P151*cosdphi12over2*cosdphi15over2*sindphi13over2*x - P132*P151*cosdphi13over2*cosdphi15over2*sindphi12over2*x + P131*P121raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2*x + P131*P122raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2*x - P151*P121raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2*x - P151*P122raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2*x - P121*P131raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2*x - P121*P132raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2*x + P151*P131raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2*x + P151*P132raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2*x + P121*P151raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2*x + P121*P152raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2*x - P131*P151raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2*x - P131*P152raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2*x + P121*P131*cosdphi12over2*cosdphi15over2*sindphi13over2*y - P121*P131*cosdphi13over2*cosdphi15over2*sindphi12over2*y - P121*P151*cosdphi12over2*cosdphi13over2*sindphi15over2*y + P121*P151*cosdphi13over2*cosdphi15over2*sindphi12over2*y + P131*P151*cosdphi12over2*cosdphi13over2*sindphi15over2*y - P131*P151*cosdphi12over2*cosdphi15over2*sindphi13over2*y + P132*P121raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2*y + P132*P122raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2*y - P152*P121raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2*y - P152*P122raised_to2*cosdphi13over2*cosdphi15over2*sindphi12over2*y - P122*P131raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2*y - P122*P132raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2*y + P152*P131raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2*y + P152*P132raised_to2*cosdphi12over2*cosdphi15over2*sindphi13over2*y + P122*P151raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2*y + P122*P152raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2*y - P132*P151raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2*y - P132*P152raised_to2*cosdphi12over2*cosdphi13over2*sindphi15over2*y - P121*P131*cosdphi12over2*sindphi13over2*sindphi15over2*x + P121*P131*cosdphi13over2*sindphi12over2*sindphi15over2*x + P121*P151*cosdphi12over2*sindphi13over2*sindphi15over2*x - P121*P151*cosdphi15over2*sindphi12over2*sindphi13over2*x - P131*P151*cosdphi13over2*sindphi12over2*sindphi15over2*x + P131*P151*cosdphi15over2*sindphi12over2*sindphi13over2*x - P132*P121raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x + P132*P121raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x - P132*P122raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x + P132*P122raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x - P152*P121raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x + P152*P121raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x - P152*P122raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x + P152*P122raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x + P122*P131raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x - P122*P131raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x + P122*P132raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x - P122*P132raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x + P152*P131raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x - P152*P131raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x + P152*P132raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x - P152*P132raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*x - P122*P151raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x + P122*P151raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x - P122*P152raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x + P122*P152raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x - P132*P151raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x + P132*P151raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x - P132*P152raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*x + P132*P152raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*x - P121*P132*cosdphi12over2*sindphi13over2*sindphi15over2*y + P122*P131*cosdphi13over2*sindphi12over2*sindphi15over2*y + P121*P152*cosdphi12over2*sindphi13over2*sindphi15over2*y - P122*P151*cosdphi15over2*sindphi12over2*sindphi13over2*y - P131*P152*cosdphi13over2*sindphi12over2*sindphi15over2*y + P132*P151*cosdphi15over2*sindphi12over2*sindphi13over2*y + P131*P121raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y - P131*P121raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y + P131*P122raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y - P131*P122raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y + P151*P121raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y - P151*P121raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y + P151*P122raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y - P151*P122raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y - P121*P131raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y + P121*P131raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y - P121*P132raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y + P121*P132raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y - P151*P131raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y + P151*P131raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y - P151*P132raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y + P151*P132raised_to2*cosdphi15over2*sindphi12over2*sindphi13over2*y + P121*P151raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y - P121*P151raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y + P121*P152raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y - P121*P152raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y + P131*P151raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y - P131*P151raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y + P131*P152raised_to2*cosdphi12over2*sindphi13over2*sindphi15over2*y - P131*P152raised_to2*cosdphi13over2*sindphi12over2*sindphi15over2*y + P131*P121raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x + P131*P122raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x - P151*P121raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x - P151*P122raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x - P121*P131raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x - P121*P132raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x + P151*P131raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x + P151*P132raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x + P121*P151raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x + P121*P152raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x - P131*P151raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x - P131*P152raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*x + P132*P121raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y + P132*P122raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y - P152*P121raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y - P152*P122raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y - P122*P131raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y - P122*P132raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y + P152*P131raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y + P152*P132raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y + P122*P151raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y + P122*P152raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y - P132*P151raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y - P132*P152raised_to2*sindphi12over2*sindphi13over2*sindphi15over2*y + P121*P132*P152*cosdphi12over2*cosdphi13over2*sindphi15over2*x - P121*P132*P152*cosdphi12over2*cosdphi15over2*sindphi13over2*x - P122*P131*P152*cosdphi12over2*cosdphi13over2*sindphi15over2*x + P122*P131*P152*cosdphi13over2*cosdphi15over2*sindphi12over2*x + P122*P132*P151*cosdphi12over2*cosdphi15over2*sindphi13over2*x - P122*P132*P151*cosdphi13over2*cosdphi15over2*sindphi12over2*x + 2*P121*P131*P152*cosdphi12over2*cosdphi15over2*sindphi13over2*y - 2*P121*P131*P152*cosdphi13over2*cosdphi15over2*sindphi12over2*y - 2*P121*P132*P151*cosdphi12over2*cosdphi13over2*sindphi15over2*y + 2*P121*P132*P151*cosdphi13over2*cosdphi15over2*sindphi12over2*y + 2*P122*P131*P151*cosdphi12over2*cosdphi13over2*sindphi15over2*y - 2*P122*P131*P151*cosdphi12over2*cosdphi15over2*sindphi13over2*y - P121*P131*P152*cosdphi12over2*sindphi13over2*sindphi15over2*x + P121*P131*P152*cosdphi13over2*sindphi12over2*sindphi15over2*x + P121*P132*P151*cosdphi12over2*sindphi13over2*sindphi15over2*x - P121*P132*P151*cosdphi15over2*sindphi12over2*sindphi13over2*x - P122*P131*P151*cosdphi13over2*sindphi12over2*sindphi15over2*x + P122*P131*P151*cosdphi15over2*sindphi12over2*sindphi13over2*x + 2*P121*P132*P152*cosdphi13over2*sindphi12over2*sindphi15over2*y - 2*P121*P132*P152*cosdphi15over2*sindphi12over2*sindphi13over2*y - 2*P122*P131*P152*cosdphi12over2*sindphi13over2*sindphi15over2*y + 2*P122*P131*P152*cosdphi15over2*sindphi12over2*sindphi13over2*y + 2*P122*P132*P151*cosdphi12over2*sindphi13over2*sindphi15over2*y - 2*P122*P132*P151*cosdphi13over2*sindphi12over2*sindphi15over2*y + P121*P132*cosdphi12over2*cosdphi13over2*cosdphi15over2*x*y - P122*P131*cosdphi12over2*cosdphi13over2*cosdphi15over2*x*y - P121*P152*cosdphi12over2*cosdphi13over2*cosdphi15over2*x*y + P122*P151*cosdphi12over2*cosdphi13over2*cosdphi15over2*x*y + P131*P152*cosdphi12over2*cosdphi13over2*cosdphi15over2*x*y - P132*P151*cosdphi12over2*cosdphi13over2*cosdphi15over2*x*y + P121*P131*cosdphi12over2*cosdphi15over2*sindphi13over2*x*y - P121*P131*cosdphi13over2*cosdphi15over2*sindphi12over2*x*y - 2*P122*P132*cosdphi12over2*cosdphi15over2*sindphi13over2*x*y + 2*P122*P132*cosdphi13over2*cosdphi15over2*sindphi12over2*x*y - P121*P151*cosdphi12over2*cosdphi13over2*sindphi15over2*x*y + P121*P151*cosdphi13over2*cosdphi15over2*sindphi12over2*x*y + 2*P122*P152*cosdphi12over2*cosdphi13over2*sindphi15over2*x*y - 2*P122*P152*cosdphi13over2*cosdphi15over2*sindphi12over2*x*y + P131*P151*cosdphi12over2*cosdphi13over2*sindphi15over2*x*y - P131*P151*cosdphi12over2*cosdphi15over2*sindphi13over2*x*y - 2*P132*P152*cosdphi12over2*cosdphi13over2*sindphi15over2*x*y + 2*P132*P152*cosdphi12over2*cosdphi15over2*sindphi13over2*x*y - P121*P132*cosdphi12over2*sindphi13over2*sindphi15over2*x*y + 2*P121*P132*cosdphi13over2*sindphi12over2*sindphi15over2*x*y - 2*P122*P131*cosdphi12over2*sindphi13over2*sindphi15over2*x*y + P122*P131*cosdphi13over2*sindphi12over2*sindphi15over2*x*y + P121*P152*cosdphi12over2*sindphi13over2*sindphi15over2*x*y - 2*P121*P152*cosdphi15over2*sindphi12over2*sindphi13over2*x*y + 2*P122*P151*cosdphi12over2*sindphi13over2*sindphi15over2*x*y - P122*P151*cosdphi15over2*sindphi12over2*sindphi13over2*x*y - P131*P152*cosdphi13over2*sindphi12over2*sindphi15over2*x*y + 2*P131*P152*cosdphi15over2*sindphi12over2*sindphi13over2*x*y - 2*P132*P151*cosdphi13over2*sindphi12over2*sindphi15over2*x*y + P132*P151*cosdphi15over2*sindphi12over2*sindphi13over2*x*y
I have a long symbolic expression for the determinant of a symbolic matrix. I need the coefficients of x^3 x^2 x and constants. Anything other than x's y's and their powers is known numericals. When I want to see the coefficients of x^3 MATLAB returns 'Error using mupadengine/evalin2sym. Invalid indeterminate.'
Elements of the matrix are actually sines cosines and divisions and all butt MATLAB doesn't accept command expressions for symbolic variables, that's why I declared them that way.