Forward Euler solution improvement

36 views (last 30 days)
Cesar
Cesar on 6 Feb 2026 at 1:46
Commented: Cesar about 8 hours ago
I would like to know if this code can be improved or is well-written as it is? it does not give errors. I'll appreciate any comments.Thanks
%part a
clear; clc;
% Parameters
alpha = 10;
beta_values = [2, 4];
h = 0.01;
t = 0:h:20;
N = length(t);
% Initial conditions
y1_0 = 0;
y2_0 = 2;
for b = 1:length(beta_values)
beta = beta_values(b);
y1 = zeros(1, N);
y2 = zeros(1, N);
% Initial values
y1(1) = y1_0;
y2(1) = y2_0;
% Forward Euler method
for n = 1:N-1
f1 = alpha ...
- y1(n) ...
- (4*y1(n)*y2(n)) / (1 + y1(n)^2);
f2 = beta * y1(n) * ...
(1 - y2(n) / (1 + y1(n)^2));
y1(n+1) = y1(n) + h * f1;
y2(n+1) = y2(n) + h * f2;
end
figure;
plot(t, y1, 'LineWidth', 1.5);
xlabel('t');
ylabel('y_1(t)');
title(['Forward Euler: y_1 vs t, \beta = ', num2str(beta)]);
grid on;
figure;
plot(y1, y2, 'LineWidth', 1.5);
xlabel('y_1');
ylabel('y_2');
title(['Phase Portrait: y_2 vs y_1, \beta = ', num2str(beta)]);
grid on;
end
%part b
% Parameters
alpha = 10;
beta_values = [3.4, 3.5, 3.6];
h = 0.01;
t = 0:h:100;
N = length(t);
% Initial conditions
y1_0 = 0;
y2_0 = 2;
for b = 1:length(beta_values)
beta = beta_values(b);
y1 = zeros(1, N);
y2 = zeros(1, N);
% Initial values
y1(1) = y1_0;
y2(1) = y2_0;
% Forward Euler method
for n = 1:N-1
f1 = alpha ...
- y1(n) ...
- (4*y1(n)*y2(n)) / (1 + y1(n)^2);
f2 = beta * y1(n) * ...
(1 - y2(n) / (1 + y1(n)^2));
y1(n+1) = y1(n) + h * f1;
y2(n+1) = y2(n) + h * f2;
end
figure;
plot(t, y1, 'LineWidth', 1.5);
xlabel('t');
ylabel('y_1(t)');
title(['y_1 vs t, \beta = ', num2str(beta)]);
grid on;
figure;
plot(y1, y2, 'LineWidth', 1.5);
xlabel('y_1');
ylabel('y_2');
title(['Phase Portrait y_2 vs y_1, \beta = ', num2str(beta)]);
grid on;
end

Accepted Answer

Alan Stevens
Alan Stevens about 15 hours ago
It's clear and runs quickly. However, it's probably neater to pre-define your gradient functions like this:
% Gradient functions
f1 = @(alpha,y1,y2) alpha - y1 - (4*y1*y2) / (1 + y1^2);
f2 = @(beta,y1,y2) beta * y1 * (1 - y2 / (1 + y1^2));
and then replace the forward Euler equations simply by:
% Forward Euler method
for n = 1:N-1
y1(n+1) = y1(n) + h * f1(alpha,y1(n),y2(n));
y2(n+1) = y2(n) + h * f2(beta,y1(n),y2(n));
end
  2 Comments
Cesar
Cesar 16 minutes ago
Thanks, I would like to know if this code can also be improved? it works and does not give errors. Any comments will be appreciated.
clc; clear; close all;
% Parameters
T_final = 10;
u0 = [1; 0];
N_steps = [10000, 30000, 50000];
figure;
hold on;
colors = ['r', 'g', 'b'];
for i = 1:length(N_steps)
N = N_steps(i);
h = T_final / N;
t = 0:h:T_final;
u = zeros(2, length(t));
u(:, 1) = u0;
% Forward Euler
for n = 1:N
f = [u(2, n); -u(1, n)];
u(:, n+1) = u(:, n) + h * f;
end
plot(u(1, :), u(2, :), 'Color', colors(i), 'LineWidth', 1, ...
'DisplayName', ['N = ' num2str(N)]);
end
xlabel('u_1');
ylabel('u_2');
title('u_2 vs u_1 (Forward Euler)');
set(gcf, 'Position', [100, 100, 00, 500])
legend('show');
grid on;
axis equal;
Cesar
Cesar about 4 hours ago
Also just wondering if oed45 is correctly implemented here?:
function orbit
mu = 0.012277471;
mu_hat = 1 - mu;
T_final = 17.06521656; % One full period
y0 = [0.994; 0; 0; -2.00158510637908252240537862224];
options = odeset('RelTol', 1e-12, 'AbsTol', 1e-12);
[t, y] = ode45(@(t, y) arenstorf_system(t, y, mu, mu_hat), [0 T_final], y0, options);
figure('Color', 'w', 'Position', [100, 100, 900, 700]);
plot(y(:,1), y(:,2), 'b--', 'LineWidth', 1.5);
hold on;
xlabel('u_1'); ylabel('u_2');
legend('ode45 solution');
grid on;
axis equal; % Ensures the orbit isn't visually distorted
end
function dy = arenstorf_system(~, y, mu, mu_hat)
u1 = y(1); u2 = y(2); v1 = y(3); v2 = y(4);
D1 = ((u1 + mu)^2 + u2^2)^(3/2);
D2 = ((u1 - mu_hat)^2 + u2^2)^(3/2);
du1 = v1;
du2 = v2;
dv1 = u1 + 2*v2 - mu_hat*(u1 + mu)/D1 - mu*(u1 - mu_hat)/D2;
dv2 = u2 - 2*v1 - mu_hat*u2/D1 - mu*u2/D2;
dy = [du1; du2; dv1; dv2];
end

Sign in to comment.

More Answers (0)

Categories

Find more on Mathematics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!