Deconvolution using FFT - a classical problem
110 views (last 30 days)
Show older comments
Hello friends, I am new to signal processing and I am trying to achive deconvolution using FFT. I have an input step function u(t) applied to an impulse response given by
. The output function is
. I am trying to convolve g and u to get y as well as deconvolve y and g to get u. However, I quite cannot get the right answers. I understand that the deconvolution process is ill-posed and I have to use some kind of normalization process but I am lost. I also apply zero padding to twice the length of the input signals. Any sort of guidance will be appreciated.

After using deconvolution in the fourier domain:
Y = fft(y)
G = fft(g)
X = Y./G
x = ifft(X)
I am getting an output shown below:

Which is not the expected outcome. Can someone shead light on what is happening here? Thank you.
0 Comments
Answers (2)
Matt J
on 19 Feb 2026 at 20:20
Edited: Matt J
on 19 Feb 2026 at 20:49
dt=0.001;
N=20/dt;
t= ( (0:N-1)-ceil((N-1)/2) )*dt; %t-axis
u=(t>=0);
g=3*exp(-t).*u;
y=conv(g,u,'same')*dt;
Y = fft(y);
G = fft(g);
X = Y./G;
x = fftshift(ifft(X,'symmetric')/dt);
figure;
sub=1:0.3/dt:N;
plot(t,3*(1-exp(-t)).*u,'r.' , t(sub), y(sub),'-bo');
xlabel t
legend Theoretical Numeric Location northwest
title 'Output y(t)'
figure;
plot(t, u,'r.' , t(sub), x(sub),'-bo'); ylim([-1,4])
title Deconvolution
xlabel t
legend Theoretical Numeric Location northwest
14 Comments
Matt J
about 1 hour ago
Edited: Matt J
23 minutes ago
But the time domain signals of both Z1 and T looks the same.
No, they do not. If you apply the inverse FFT to Z1 without truncating to the interval
, you will see that the convolution result has a decaying part in
. For good measure, I also demonstrate the agreement of this with time-domain convolution in the code below.
I understand that the interval
is not of physical interest for you, but unfortunately you are not free to ignore or change to zero the values that reside there if you still want the Fourier convolution duality theorem to hold. Those values contribute to the Fourier transform of conv(g,q).
To put it another way, recall that the Fourier Transform is originally an integral from
to
. It only reduces to an integral on a finite interval when the values of the signal are zero outside that interval, but conv(g,q) is not zero outside of
. Ultimately, i think you will need to consider non-Fourier deconvolution methods, like I proposed in my other answer.
clc
clearvars
dt = 1e-6;%sampling period
df = 1/dt;%sampling frequency
t = 0:dt:1-dt;%Time vector
qmax = 1e5;%W/m2 maximum step heat flux
alpha = 3.56E-6;%m2/s diffusivity
k = 15; %W/m-k thermal conductivity
x = 1e-5;%m junction depth
DeltaT = (((2*qmax)/k).*sqrt((alpha*t)/pi).*exp((-x*x)./(4*alpha*t)))-(((qmax*x)/k).*(1-erf(x./(2*sqrt(alpha*t)))));
g = sqrt(alpha./(pi*k*k.*t)).*exp((-x*x)./(4*alpha.*t));
g(1) = 1e-9;%to replace NaN at t = 0
q = qmax*ones(length(t),1)';
n = length(DeltaT);
m = length(g);
%Zero padding to get linear convolution from circular convolution
qpad = paddata(q,n+m-1);%padded heat flux
gpad = paddata(g,n+m-1);%padded impulse response
temppad = paddata(DeltaT,n+m-1);%padded temperature
% Perform fourier transform
G = fft(gpad);
T = fft(temppad);
Q = fft(qpad);
% Convolve heat flux and impulse response
Z1 = dt.* G.*Q;
% Back to time domain
z = (ifft(Z1));
%znew = z(1:length(t));
tlong=(0:numel(z)-1) *dt;
convgq=conv(g,q,'full')*dt;
skip=round(numel(z)/30);
plot( tlong , z, 'b-', tlong(1:skip:end),convgq(1:skip:end),'ro')
legend('Fourier Convolution','Time Domain Convolution',Location="northeast")
See Also
Categories
Find more on Spectral Measurements in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!












