Time series forecasting. Error with ARIMA model.

1 view (last 30 days)
Hello. I have really strange situation. I have such simple code
train_set = [1569;1062;2294;3239;1852;1274;3423;3623;1596]
Mdl = arima(2,0,2);
EstMdl = estimate(Mdl,train_set,'Display','off');
and I get error
Error using arima/validateModel (line 1314)
The non-seasonal moving average polynomial is non-invertible.
Error in arima/setLagOp (line 391)
Mdl = validateModel(Mdl);
Error in arima/estimate (line 1183)
Mdl = setLagOp(Mdl, 'MA' , LagOp([1 coefficients(iMA)' ], 'Lags', [0 LagsMA
]));
I thought that this is becase train_set vector is too short... but for train_set = [1;2;3;4;5;6;7;8;9] or train_set = sin(1:9).' or many others vectors everything works perfect. If I multiplay this vector by train_set = [train_set ; train_set ] it works fine too. Do anybody knows how it is possible ? How to ommit this error ?
  1 Comment
Brendan Hamm
Brendan Hamm on 6 Jul 2015
I am not able to reproduce your error:
train_set = [1569;1062;2294;3239;1852;1274;3423;3623;1596];
Mdl = arima(2,0,2);
EstMdl = estimate(Mdl,train_set)
Warning: Nonlinear inequality constraints are active; standard errors may be
inaccurate.
> In arima/estimate (line 1113)
ARIMA(2,0,2) Model:
--------------------
Conditional Probability Distribution: Gaussian
Standard t
Parameter Value Error Statistic
----------- ----------- ------------ -----------
Constant 3756.93 1674.45 2.24368
AR{1} 0.156784 0.941963 0.166444
AR{2} -0.85079 0.320351 -2.65581
MA{1} 0.747326 0.937987 0.796734
MA{2} -0.252674 1.43229 -0.176413
Variance 124140 209476 0.592619
EstMdl =
ARIMA(2,0,2) Model:
--------------------
Distribution: Name = 'Gaussian'
P: 2
D: 0
Q: 2
Constant: 3756.93
AR: {0.156784 -0.85079} at Lags [1 2]
SAR: {}
MA: {0.747326 -0.252674} at Lags [1 2]
SMA: {}
Variance: 124140

Sign in to comment.

Answers (0)

Categories

Find more on Conditional Mean Models in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!