How can I use vectorization to speed up the following code

2 views (last 30 days)
I have the following code. x, y and t are variables. M is a big number and I discovered that the double loop will take a longer time. I need help in making it faster, all other example have seen are partially helpful. Thanks a lot.
function f=exact(x,y,t,M,j)
f=0;
for i=1:M
for j=1:M
f=f+(16*(sin(j*pi)*sin(i*pi)*l*i^2*pi^3+4*sin(j*pi)*cos(i*pi)*j*i*pi^2+2*sin(i*pi)*cos(j*pi)*i^2*pi^2+2*sin(j*pi)*j*i*pi^2-2*i^2*pi^2*sin(i*pi)...
-6*sin(j*pi)*sin(i*pi)*j*pi+8*cos(i*pi)*cos(j*pi)*i*pi-8*i*pi*cos(i*pi)+4*cos(j*pi)*i*pi-12*sin(i*pi)*cos(j*pi)-4*i*pi+12*sin(j*pi)))/(i^4*pi^7*j^3)...
*cos(sqrt(i^2+j^2)*pi*t).*sin(i*pi*x).*sin(j*pi*y);
end
end
  2 Comments
Jan
Jan on 1 Nov 2015
Edited: Jan on 1 Nov 2015
The expected size of M matters: Completely different approaches are required for M=4 and M=4*1e7 . "Faster" ist not clear enough: Do you have a fixed time limit, such that it is worth to spend an hour to create a C-Mex function? Or doy you want to save some minutes only, such that spending an hour would mean a loss of total time?
The input "j" is not used, because it is overwritten by the FOR loop counter. So perhaps this is a typo: The variable "l" is undefinde. Then accelerating buggy code is fruitless.
Jan
Jan on 1 Nov 2015
Edited: Jan on 1 Nov 2015
The formula looks very strange: You evaluate a lot of "sin(i*pi)" and "cos(j*pi)", but "i" and "j" are intergers. Then rounding errors dominate the result: Mathematically "sin(i*pi)" is exactly zeros, but the limited precision leads to a value of 1.2246e-016. Nevertheless, you can omit all terms, which contain a "sin(i*pi)" or "sin(j*pi)", while the cos-expressions can be replaced by a multiplication by 1 - which can be omitted.
I have the strong impression, that you did not post the real code. But optimizing pseudo-code is meaningless. Please provide a valid input also.

Sign in to comment.

Answers (1)

Jan
Jan on 1 Nov 2015
Edited: Jan on 1 Nov 2015
Although I'm in doubt that the shown code is correct, I've cleaned it up a little bit moving repeated calculations outside the inner loop:
function f=exact(x,y,t,M,l) % "l" instead of "j"?!
pi3 = pi^3;
pi2 = pi^2;
pi7 = pi^7;
f = 0;
for i=1:M
i2 = i^2;
sin_i_pi = sin(i * pi);
cos_i_pi = cos(i * pi);
sin_i_pi_x = sin(i * pi * x);
C1 = sin_i_pi * i2;
C2 = 2 * i2 * pi2 * sin_i_pi;
C3 = 8 * i * pi * cos_i_pi;
C4 = 4 * i * pi;
C5 = i^4 * pi7;
C6 = 4 * cos_i_pi * i * pi2;
C7 = 8 * cos_i_pi * i * pi;
C8 = 6 * sin_i_pi * pi;
for j=1:M
sin_j_pi = sin(j * pi);
cos_j_pi = cos(j * pi);
f = f + (sin_j_pi * C1 * l * pi3 + ...
sin_j_pi * j * C6 + ...
2 * C1 * cos_j_pi * pi2 + ...
2 * sin_j_pi * j * i * pi2 - ...
C2 - ...
sin_j_pi * j * C8 + ...
cos_j_pi * C7 - ...
C3 + ...
4 * cos_j_pi * i * pi - ...
12* sin_i_pi * cos_j_pi - ...
C4 + 12 * sin_j_pi) / ...
(C5 * j^3) * ...
cos(sqrt(i2 + j^2) * pi * t) .* sin_i_pi_x .* sin(j*pi*y);
end
end
f = f * 16;
This takes 1.10 sec instead of 3.15 sec on my old Matlab R2011b/64/Win7/Core2Duo.
But as written in my comment already: All sin terms can be omitted, because they are 0, while the cos expression is 1, such that the formula can be simplified substantially.
  3 Comments
Jan
Jan on 1 Nov 2015
The "l" is undefined in the first term:
sin(j*pi) * sin(i*pi) * l * i^2 * pi^3
What about the vanishing value of "sin(i*pi)"?
Oluwaseun Lijoka
Oluwaseun Lijoka on 1 Nov 2015
Dear Jan, The code is an exact solution to a solved wave equation in which when M is tending to infinity, that is why I stated M to be a big number. I want to compare this exact solution with a numerical approximation in terms of error and convergence. Looping i and j over M each time could be waste of time. Here is the whole code:
function f=exact(x,y,t,M,j)
if (nargin<5) j=0; end f=0; % tic if (j==0) % exact soln for m=1:M for l=1:M f=f+((16*(sin(l*pi)*sin(m*pi)*l*m^2*pi^3+4*sin(l*pi)*cos(m*pi)*l*m*pi^2+2*sin(m*pi)*cos(l*pi)*m^2*pi^2+2*sin(l*pi)*l*m*pi^2-2*m^2*pi^2*sin(m*pi)... -6*sin(l*pi)*sin(m*pi)*l*pi+8*cos(m*pi)*cos(l*pi)*m*pi-8*m*pi*cos(m*pi)+4*cos(l*pi)*m*pi-12*sin(m*pi)*cos(l*pi)-4*m*pi+12*sin(m*pi)))/(m^4*pi^7*l^3))... .*cos(sqrt(m^2+l^2)*pi*t).*sin(m*pi*x).*sin(l*pi*y);
end
end
elseif (j==1) % derivative w.r.t time
for m=1:M
for l=1:M
f=f+((16*(sin(l*pi)*sin(m*pi)*l*m^2*pi^3+4*sin(l*pi)*cos(m*pi)*l*m*pi^2+2*sin(m*pi)*cos(l*pi)*m^2*pi^2+2*sin(l*pi)*l*m*pi^2-2*m^2*pi^2*sin(m*pi)...
-6*sin(l*pi)*sin(m*pi)*l*pi+8*cos(m*pi)*cos(l*pi)*m*pi-8*m*pi*cos(m*pi)+4*cos(l*pi)*m*pi-12*sin(m*pi)*cos(l*pi)-4*m*pi+12*sin(m*pi)))/(m^4*pi^7*l^3))...
*(-sqrt(m^2+l^2)*pi).*sin(sqrt(m^2+l^2)*pi*t).*sin(m*pi*x).*sin(l*pi*y);
end
end
elseif (j==2) % derivative w.r.t variable x for m=1:M for l=1:M f=f+((16*(sin(l*pi)*sin(m*pi)*l*m^2*pi^3+4*sin(l*pi)*cos(m*pi)*l*m*pi^2+2*sin(m*pi)*cos(l*pi)*m^2*pi^2+2*sin(l*pi)*l*m*pi^2-2*m^2*pi^2*sin(m*pi)... -6*sin(l*pi)*sin(m*pi)*l*pi+8*cos(m*pi)*cos(l*pi)*m*pi-8*m*pi*cos(m*pi)+4*cos(l*pi)*m*pi-12*sin(m*pi)*cos(l*pi)-4*m*pi+12*sin(m*pi)))/(m^4*pi^7*l^3))... *(m*pi).*cos(sqrt(m^2+l^2)*pi*t).*cos(m*pi*x).*sin(l*pi*y); end
end
elseif (j==3) % derivative w r t variable y
for m=1:M
for l=1:M
f=f+((16*(sin(l*pi)*sin(m*pi)*l*m^2*pi^3+4*sin(l*pi)*cos(m*pi)*l*m*pi^2+2*sin(m*pi)*cos(l*pi)*m^2*pi^2+2*sin(l*pi)*l*m*pi^2-2*m^2*pi^2*sin(m*pi)...
-6*sin(l*pi)*sin(m*pi)*l*pi+8*cos(m*pi)*cos(l*pi)*m*pi-8*m*pi*cos(m*pi)+4*cos(l*pi)*m*pi-12*sin(m*pi)*cos(l*pi)-4*m*pi+12*sin(m*pi)))/(m^4*pi^7*l^3))...
*(l*pi).*cos(sqrt(m^2+l^2)*pi*t).*sin(m*pi*x).*cos(l*pi*y);
end
end
end Thanks a lot

Sign in to comment.

Categories

Find more on Mathematics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!