Neural Network result offset by one
2 views (last 30 days)
Show older comments
M. A. Hopcroft
on 11 Feb 2016
Commented: M. A. Hopcroft
on 17 Feb 2016
I am learning the Neural Networks toolbox and I worked through a simple example using narxnet to predict the output of a sine function:
proffset = 5; % target offset to train for prediction
tdelay = 2; % length of delay line
x = [1:tstep:15]; % create the example function
y = 2*sin(x)+1; % y = f(x(t)), x(t)=t
xo = x(1:end-proffset); % training inputs, x(t)
yo = y(proffset+1:end); % training targets, y(t-T)
net = narxnet(1:tdelay,1:tdelay,10); % default values
[Xs,Xi,Ai,Ts,Ew,tshift] = preparets(net,num2cell(xo),{},num2cell(yo));
net = train(net,Xs,Ts,Xi,Ai);
[yn, xn, an] = net(Xs,Xi,Ai);
plot(xo(tdelay+1:end),cell2mat(yn),'o-g');
This works fine. The outputs match the targets very closely, as expected for a simple function.
However, when I use my real data in this code framework, the output results are clearly shifted by -1, even though the number of outputs is correct (i.e., number of outputs = number of targets - length of delay line).
The example seems very straightforward, and I can't figure out why "real" data would produce this kind of behavior. What can cause this kind of offset? Thank you!
0 Comments
Accepted Answer
Greg Heath
on 13 Feb 2016
Edited: Greg Heath
on 13 Feb 2016
1. Since I always use
a. t and y to denote target and output
b. subscripts "o" and "c" to denote "o"penloop
and "c"loseloop,
I had to change notation to prevent my confusion.
2. What does the pr in proffset represent?
3. Shouldn't your comment concern training input x(t) and training target y(t+T) (instead of y-T) so that x(1) predicts y(1+T) ? I think this may have caused your confusion.
4. The default 'dividerand' causes interpolation (at (sometimes VERY) nonconstant timesteps). To get a good understanding use the diff function to determine the spacings among the validation and test data for this simple example:
[trnind valind tstind]= dividerand(100,0.7,0.15,0.15);
valspacing = diff(valind)
testspacing = diff(tstind)
Surprised?
5. For unbiased timeseries prediction
testInd = [ Ntrn + Nval + 1: N ]
This can be accomplished in many ways
a. Divideblock: [ Ntrn, Nval, Ntst ] %Includes Nval = 0
b. Divideint,divideind or dividerand on 1:Ntrn+Nval
Obviously, only divideblock provides accurate spacing.
close all, clear all, clc, plt=0, tic
dx = 0.1, x0 = [ 1: dx: 15 ]; t0 = 2*sin( x0 ) + 1;
[ I N0 ] = size(x0), [ O N0 ] = size(t0) % [ 1 141 ]
offset = 5, N = N0 - offset % 136
x = x0(1:end - offset ); t = t0(offset + 1 : end );
X = con2seq(x); T = con2seq(t);
d=2, ID = 1:d, FD = 1:2, H = 10 % NARXNET defaults
neto = narxnet;
% neto.divideFcn = 'divideblock'; % For prediction
[ Xo, Xoi, Aoi, To ] = preparets( neto, X, {}, T );
to=cell2mat(To);varto=var(to,1) % 2.0492 Reference MSE
% Desire MSEo/varto <= 0.005 before closing loop
Ntrials = 12
rng('default')
for i =1:Ntrials
state(i) = rng;
neto = configure(neto, Xo, To);
[neto tro Yo Eo Xof Aof]=train(neto,Xo,To,Xoi,Aoi);
% [Yo Xof Aof ] = net(Xo,To,Xoi,Aoi);
% Eo = gsubtract(To,Yo)
NMSEo(i) = mse(Eo)/varto;
end
[ minNMSEo imin] = min(NMSEo) % [ 1.8972e-06 8 ]
result = NMSEo
% result = 0.022016 0.0024273 0.0026271 3.2378e-5
% 0.010759 0.15988 0.0074602 1.8972e-6
% 0.000851 0.79191 0.0008976 0.0064785
Hope this helps.
Thank you for formally accepting my answer
Greg
More Answers (0)
See Also
Categories
Find more on Modeling and Prediction with NARX and Time-Delay Networks in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!