how to fit a curve in the form of A = (L^x)(D^y)
1 view (last 30 days)
Show older comments
hi, i have some response data as vector A where the variables are L and D.
I just want to find the coefficients for L and D which will fit my data in the form mentioned in the title.
I want to fit a curved line, and not a surface.
I feel it should be fairly simple, but reading a few old answers also didn't help my case.
Is there some easy way to do this?
In case u want to see the data, here it is:
A = [0 0.06 0.12 0.44 0.56 0.94 1 1 0 0.04 0.58 0.74 0.86 1 1]
L = [100 100 100 100 100 100 100 100 43.7 49.7 56 61.5 65 77 93.8]
D = [11.3 10.1 8.9 8.5 8.1 7.7 6.5 5.3 5 5 5 5 5 5 5]
Thanks a lot.
More info:
I wrote the above equation as logA = xlogL + ylogD, and tried to use
X = [ones(size(logL)) logL logD];
b = regress(logA,X);
but Matlab didn't return any coefficients, it just gave b = NaN NaN NaN
4 Comments
Accepted Answer
Jos (10584)
on 22 Feb 2016
nlm = fitnlm([L(:) D(:)], A, 'y~(x1^b1)*(x2^b2)',[0 0])
2 Comments
Jos (10584)
on 23 Feb 2016
I had the same outcome, so that's good. If you think you can come up with a better model you can fit that as well, of course. By the way, always plot your data, your fit and your residuals (fittedY - Y) to see how your model is doing.
More Answers (0)
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!