i am trying to use cross validation in order to determine the optimum number of hidden units for neural network. Am getting an error which i am not able to decipher.
2 views (last 30 days)
Show older comments
Error using crossval>evalFun (line 480) The function '@(Xtrain,Ytrain,Xtest)model_finder(i,Xtrain,Ytrain,Xtest)' generated the following error: Invalid types for comparison.
Error in crossval>getLossVal (line 517) funResult = evalFun(funorStr,arg(1:end-1));
Error in crossval (line 416) [funResult,outarg] = getLossVal(i, nData, cvp, data, predfun);
Error in nnrealmain (line 7) mcr=crossval('mcr',x,y,'predfun',hid_find,'partition',c);
This is the main code i typed for cross validation.
load('permanentpcadata.mat');
mcrs=[]; y=[ones(18,1);2*ones(13,1);3*ones(18,1);4*ones(16,1);5*ones(21,1);6*ones(9,1)];
for i=6:20
hid_find=@(Xtrain,Ytrain,Xtest)model_finder(hiiden_units,Xtrain,Ytrain,Xtest); c=cvpartition(y,'k',10); mcr=crossval('mcr',x,y,'predfun',hid_find,'partition',c);
mcrs=[mcrs mcr]; end
save('crossvalop.mat','mcrs');
index=6:20; plot(index,mcrs);
could you suggest where i have gone wrong in the implementation of cross validation?
1 Comment
Greg Heath
on 8 May 2016
My only suggestion is to search both the NEWSGROUP and ANSWERS using the search word 'crossval'
Answers (0)
See Also
Categories
Find more on Gaussian Process Regression in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!