3rd order nonlinear PDE
3 views (last 30 days)
Show older comments
if true
% clear all; close all; m1=1;m2=0.1;m3=0.1;xL=-10; xR=10; Nx=50; t0=0; tf=0.4; Nt=25;
h=(xR-xL)/Nx;
k=(tf-t0)/Nt;
r=m2*k/h^2;
s=m3*k/2*h^3;
x=xL:h:xR;
u=zeros(Nx+1,Nt);
%if exact solution is
f=(-6*m3^2/25*m2)*(1 + tanh(m3*x/10*m2) + 0.5*sech(m3*x/10*m2)^2);
for j=1:Nt t=j*k;
if j==1
for i=2:Nx u(i,j)=f(i)+r*(f(i+1)-2*f(i)+f(i-1))-s*(f(i+2)-2*f(i+1)+2*f(i-1)-f(i-2))-k/h*f(i)*(f(i+1)-f(i)); end;
u(1,j)=0; u(Nx+1,j)=0;
else
for i=2:Nx
u(i,j)=u(i,j-1)+r*(u(i+1,j-1)-2*u(i,j-1)+u(i-1,j-1))-s*(u(i+2,j-1)-2*u(i+1,j-1)+2*u(i-1,j-1)-u(i-2,j-1))-k/h*u(i,j-1)*(u(i+1,j-1)-u(i,j-1));
end;
u(1,j)=0; u(Nx+1,j)=0;
end
end; T=1*k:k:Nt*k;
figure(1);
surf(x,T,u'); xlabel('x'); ylabel('y'); zlabel('u');
title('Numerical solution');
figure(2);
hold on; plot(x,u(:,1),'k-',x,u(:,10),'k--',x,u(:,Nt),'k:','LineWidth',2);
title('Solution profile at t_k= 0.016, 0.16, 0.4');
legend('t=0.016','t=0.16','t=0.4');
figure(3);
G=plot(x,u(:,1),'LineWidth',3,'erase','xor');
for i=2:Nt set(G,'xdata',x,'ydata',u(:,i)); pause(0.1); end
title('Animation of solution'); xlabel('x'); ylabel('u(x,t_k)');
end
1 Comment
Bjorn Gustavsson
on 9 May 2016
Please edit your post so that the code section is done with the CODE-markup.
Answers (0)
See Also
Categories
Find more on Eigenvalue Problems in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!