empty sparse matrix with size greater than (100000,100000) needs overhead space
7 views (last 30 days)
Show older comments
For an industry project we want to set up a lookup-table from many (15) inputs to one output. The input values can be only in a small range, depending on each other, but may stretch over a great range otherwise, with at least 100 steps needed for resolution (-> 1e30 values). So I advised for sparse matrices.
Of course I may only use 2d-matrices, but that can be solved quite easily by re-indexing.
Nevertheless, I run into "Out-of-memory errors". The reason seems to be overhead memory that is needed to build empty sparse matrices with a size greater than (100000,100000) (-> 1e10 values). This overhead memory is only a fraction of the memory the full matrix would need of course, and this fraction grows less with the size of the matrix. But the absolute value grows with the size, up to the Out-of-memory error.
Why does a sparse matrix need any extra space at all? And why does it not need this space for relatively small sizes? Is it a bug? Is there a workaround?
clear
close all
[uV sV] = memory;
basemem = uV.MemUsedMATLAB;
try
for i = 1:20
A = sparse(10^i,10^i);
[uV sV] = memory;
mem(i) = uV.MemUsedMATLAB - basemem;
end
catch
dummy = 4;
end
l = numel(mem);
ls = 1;
addrSpace = 10.^((ls:l)*2);
figure
loglog(addrSpace,mem(ls:l));
figure
semilogx(addrSpace,mem(ls:l)./addrSpace);
clear
0 Comments
Accepted Answer
James Tursa
on 15 Feb 2012
Sparse matrices in MATLAB always store an index vector that is the same size as the number of columns+1. So even for an empty sparse matrix with no memory yet allocated for any elements, there will still be this column index vector created. If just that much is killing your memory, maybe you can come up with your own manual indexing scheme into the actual sparse matrix that only has a few actual columns in the sparse matrix. E.g., have the actual sparse matrix be a column vector and then manually calculate the actual column location of an element from a 2D index pair off to the side.
0 Comments
More Answers (5)
Mark Shore
on 17 Feb 2012
for i = 1:20
A = sparse(10^i,10^i);
etc.
end
It seems that you are being a little optimistic in trying to create a (1E20,1E20) matrix, sparse or not.
0 Comments
Jochen Schuettler
on 15 Feb 2012
1 Comment
James Tursa
on 15 Feb 2012
How about multiple sparse column vectors contained in a cell array, each one that is within the limits of MAXSIZE. Complicates your indexing scheme, but seems like it could be done.
Jochen Schuettler
on 16 Feb 2012
1 Comment
James Tursa
on 16 Feb 2012
Can you show the exact code you are using to build the cell array of sparse matrices that is running out of memory?
Vanny moor
on 17 Feb 2012
Is there a way to only keep part of the matrix in memory at given time and the rest buffered on disk?
0 Comments
See Also
Categories
Find more on Sparse Matrices in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!