Why my solver still simulating a model, even there is no input value given to the S-function?

1 view (last 30 days)
Hi..
I try to simulate a dynamic system with 9 state derivatives (4 input and 9 output) using level-2 S-function in SIMULINK. This simulation works well.
But, when I delete one/more input value(s) that been given to this model, my solver (ode23s) still solve the model and the simulation run. Why could this happen? Could anybody tell me, since I really confuse right now.. :-(
Here is my S-function:
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function level2_blood(block)
setup(block);
function setup(block)
% Register number of ports
block.NumInputPorts = 4;
block.NumOutputPorts = 9;
% Setup port properties to be inherited or dynamic
block.SetPreCompInpPortInfoToDynamic;
block.SetPreCompOutPortInfoToDynamic;
% Override input port properties
block.InputPort(1).Dimensions = 1;
block.InputPort(1).DatatypeID = 0; % double
block.InputPort(1).Complexity = 'Real';
block.InputPort(1).DirectFeedthrough = true;
block.InputPort(2).Dimensions = 1;
block.InputPort(2).DatatypeID = 0; % double
block.InputPort(2).Complexity = 'Real';
block.InputPort(2).DirectFeedthrough = true;
block.InputPort(3).Dimensions = 1;
block.InputPort(3).DatatypeID = 0; % double
block.InputPort(3).Complexity = 'Real';
block.InputPort(3).DirectFeedthrough = true;
block.InputPort(4).Dimensions = 1;
block.InputPort(4).DatatypeID = 0; % double
block.InputPort(4).Complexity = 'Real';
block.InputPort(4).DirectFeedthrough = true;
% Override output port properties
block.OutputPort(1).Dimensions = 1;
block.OutputPort(1).DatatypeID = 0; % double
block.OutputPort(1).Complexity = 'Real';
% Override output port properties
block.OutputPort(2).Dimensions = 1;
block.OutputPort(2).DatatypeID = 0; % double
block.OutputPort(2).Complexity = 'Real';
% Override output port properties
block.OutputPort(3).Dimensions = 1;
block.OutputPort(3).DatatypeID = 0; % double
block.OutputPort(3).Complexity = 'Real';
% Override output port properties
block.OutputPort(4).Dimensions = 1;
block.OutputPort(4).DatatypeID = 0; % double
block.OutputPort(4).Complexity = 'Real';
% Override output port properties
block.OutputPort(5).Dimensions = 1;
block.OutputPort(5).DatatypeID = 0; % double
block.OutputPort(5).Complexity = 'Real';
% Override output port properties
block.OutputPort(6).Dimensions = 1;
block.OutputPort(6).DatatypeID = 0; % double
block.OutputPort(6).Complexity = 'Real';
% Override output port properties
block.OutputPort(7).Dimensions = 1;
block.OutputPort(7).DatatypeID = 0; % double
block.OutputPort(7).Complexity = 'Real';
% Override output port properties
block.OutputPort(8).Dimensions = 1;
block.OutputPort(8).DatatypeID = 0; % double
block.OutputPort(8).Complexity = 'Real';
% Override output port properties
block.OutputPort(9).Dimensions = 1;
block.OutputPort(9).DatatypeID = 0; % double
block.OutputPort(9).Complexity = 'Real';
% Register parameters
block.NumDialogPrms = 9;
% Set up the continuous states.
block.NumContStates = 9;
block.SampleTimes = [0 0];
block.SimStateCompliance = 'DefaultSimState';
block.RegBlockMethod('SetInputPortSamplingMode',@SetInputPortSamplingMode);
block.RegBlockMethod('InitializeConditions', @InitializeConditions);
block.RegBlockMethod('Outputs', @Outputs); % Required
block.RegBlockMethod('Derivatives', @Derivatives);
block.RegBlockMethod('Terminate', @Terminate); % Required
function SetInputPortSamplingMode(block, idx, fd)
block.InputPort(idx).SamplingMode = fd;
block.InputPort(idx).SamplingMode = fd;
block.InputPort(idx).SamplingMode = fd;
block.InputPort(idx).SamplingMode = fd;
block.OutputPort(1).SamplingMode = fd;
block.OutputPort(2).SamplingMode = fd;
block.OutputPort(3).SamplingMode = fd;
block.OutputPort(4).SamplingMode = fd;
block.OutputPort(5).SamplingMode = fd;
block.OutputPort(6).SamplingMode = fd;
block.OutputPort(7).SamplingMode = fd;
block.OutputPort(8).SamplingMode = fd;
block.OutputPort(9).SamplingMode = fd;
function InitializeConditions(block)
%initialize continuous states
carb_init= block.DialogPrm(1).Data;
pco2pl_init= block.DialogPrm(2).Data;
pco2rbc_init= block.DialogPrm(3).Data;
hco3pl_init= block.DialogPrm(4).Data;
hco3rbc_init= block.DialogPrm(5).Data;
hpl_init= block.DialogPrm(6).Data;
hrbc_init= block.DialogPrm(7).Data;
po2_init= block.DialogPrm(8).Data;
phvirt_init= block.DialogPrm(9).Data;
block.ContStates.Data(1) = carb_init;
block.ContStates.Data(2) = pco2pl_init;
block.ContStates.Data(3) = pco2rbc_init;
block.ContStates.Data(4) = hco3pl_init;
block.ContStates.Data(5) = hco3rbc_init;
block.ContStates.Data(6)= hpl_init;
block.ContStates.Data(7) = hrbc_init;
block.ContStates.Data(8) = po2_init;
block.ContStates.Data(9) = phvirt_init;
%end InitializeConditions
%% Outputs:
function Outputs(block)
block.OutputPort(1).Data = block.ContStates.Data(1);
block.OutputPort(2).Data = block.ContStates.Data(2);
block.OutputPort(3).Data = block.ContStates.Data(3);
block.OutputPort(4).Data = block.ContStates.Data(4);
block.OutputPort(5).Data = block.ContStates.Data(5);
block.OutputPort(6).Data = block.ContStates.Data(6);
block.OutputPort(7).Data = block.ContStates.Data(7);
block.OutputPort(8).Data = block.ContStates.Data(8);
block.OutputPort(9).Data = block.ContStates.Data(9);
%end Outputs
%% Derivatives:
function Derivatives(block) Xa(1)= block.ContStates.Data(1);
Xa(2)= block.ContStates.Data(2);
Xa(3)= block.ContStates.Data(3);
Xa(4)= block.ContStates.Data(4);
Xa(5)= block.ContStates.Data(5);
Xa(6)= block.ContStates.Data(6);
Xa(7)= block.ContStates.Data(7);
Xa(8)= block.ContStates.Data(8);
Xa(9)= block.ContStates.Data(9);
%model parameter values
Qb= block.InputPort(1).Data;
Vb= block.InputPort(2).Data;
PO2_g= block.InputPort(3).Data;
pco2_g= block.InputPort(4).Data;
alpha_co2= 3e-3;%co2 solubility
co2_pl= alpha_co2 * Xa(2);
co2_rbc= alpha_co2 * Xa(3);
beta_pl= 6e-3; %plasma buffer capacity
beta_rbc= 57.7e-3; % RBC buffer capacity
cat= 13000; %CA catalysis factor
K= 5.5e-4; %CA dissociation equilibrium constant
Ku= 0.12; %CO2 hydratation reaction forward constant rate, per second
Kv= 89; %co2 hydratation reaction reverse rate constant
Ka= 5000; %CO2-Hb forward constant
Kc= 2.4e-5; %carbamate ionisation constant
Kzo= 8.4e-9; %oxygenated Hb amino group ionisation constant
Kzr= 7.2e-8; %reduced Hb amino groupionisation constant
T_rbc= 0.001; %tau_rbc, half time of red cell membrane diffusion
T_hco3=0.2; %tau_hco3, half time of rbc membrane CL shift
hct= 0.3; % hematocrit
cap= 0.201; %O2 capacity of hemoglobin (per ml per blood)
vrbc= Vb*hct;
vpl= Vb*(1-hct);
Q_rbc= Qb*hct;
Q_pl= Qb* (1-hct);
a1= -8532;
a2= 2121;
a3= -67.07;
a4= 936000;
a5= -31350;
a6= 2396;
a7= -67.10;
T= 28;
ph_virt= Xa(9)
syms x
S= ((a1*x) + (a2*(x^2)) + (a3*(x^3)) + (x^4))/ (a4 + a5*x + (a6*(x^2)) + (a7*(x^3)) + (x^4));
diff_S= jacobian(S,x);
diff_simple= simplify(diff_S);
eqn= Xa(8) * (10^(0.024*(37-T) + 0.4*(ph_virt - 7.4)+ 0.06*(log(40/Xa(3)))));
int_subs= subs(diff_simple,x,eqn);
h= double(int_subs);
syms P
X= P * (10^(0.024*(37-T) + 0.4*(ph_virt - 7.4)+ 0.06*(log(40/Xa(3)))));
diff_X= jacobian(X,P);
diff_simpleP= simplify (diff_X);
int_subsP= subs(diff_simpleP,P,Xa(8));
g= double(int_subsP);
m= h*g;
x= Xa(8) * (10^(0.024*(37-T) + 0.4*(ph_virt - 7.4)+ 0.06*(log(40/Xa(3)))));
S= ((a1*x) + (a2*(x^2)) + (a3*(x^3)) + (x^4))/ (a4 + a5*x + (a6*(x^2)) + (a7*(x^3)) + (x^4));
dSdt= gradient (S);
r= (0.058*Xa(9)-0.437)*S - (0.529*Xa(9)) +4.6;
Rhco3_pl= (-Ku*alpha_co2* Xa(2))+ ((Kv/K)*Xa(6)*Xa(4));
Rhco3_rbc= cat*((-Ku *alpha_co2 *Xa(3))+ ((Kv/K)*Xa(7) *Xa(5)));
Dco2_rbc=((0.693*alpha_co2)/T_rbc)*((vrbc*vpl)/(vrbc + vpl));
Dhco3_rbc= (0.693/T_hco3)*((vrbc*vpl)/(vrbc + vpl));
carb_in= 0.00235; %from misgeld thesis
co2_plin= 0.00138; %from misgeld thesis
co2_rbcin= 0.00138; %from misgeld thesis
hco3_plin= 0.0263;%from misgeld thesis
hco3_rbcin= 0.0182; %from misgeld thesis
H_plin= 42.3e-9; %from misgeld thesis
H_rbcin= 61e-9;%from misgeld thesis
Hb= 20.58e-3;
Hb_rbc= 20.7e-3;
DO2_m= 11.291e-6; % total membrane O2 diffusing capacity of the oxygenator, Hill et al. 1973
Dco2_m= 414.64e-6; % total membrane co2 diffusing capacity of the oxygenator, Hill et al. 1973
alpha_O2= 1.35e-6;
cap_b= hct*Hb_rbc;
O2_bloodin= 0.0068;
O2_blood= (1.35e-6 * Xa(8))+ (cap_b * S);
TpH= 100000;
dcarbdt= (Q_rbc*(carb_in - Xa(1))+ Ka*co2_rbc vrbc(Hb - Xa(1))* (( (Kzo* S /(Kzo + Xa(7))) + ((Kzr*(1-S)))/ (Kzr + Xa(7))))- (vrbc*(Ka* Xa(1) * Xa(7))/Kc))/vrbc;
dpco2pldt= (Q_pl*(co2_plin-co2_pl)+ Dco2_m*(pco2_g - Xa(2)) + Dco2_rbc*(Xa(3) - Xa(2))+ vpl*Rhco3_pl)/ vpl*alpha_co2;
dpco2rbcdt= (Q_rbc*(co2_rbcin - co2_rbc) + Dco2_rbc*(Xa(2)-Xa(3))+ vrbc*Rhco3_rbc - vrbc*dcarbdt)/ vrbc*alpha_co2;
dhco3_pldt= (Q_pl*(hco3_plin -Xa(4)) - Dhco3_rbc*(Xa(4) - ((Xa(5))/r))- vpl*Rhco3_pl)/ vpl;
dhco3_rbcdt= (Q_rbc*(hco3_rbcin - Xa(5))+ Dhco3_rbc*(Xa(4) - ((Xa(5))/r))- (vrbc*Rhco3_rbc)) / vrbc;
dH_pldt= (Q_pl*(H_plin - Xa(6))- (vpl*(2.303/beta_pl)*(Xa(6))*Rhco3_pl))/ vpl; dH_rbcdt= (Q_rbc*(H_rbcin - Xa(7))- (vrbc*(2.303/beta_rbc)*Xa(7))*(-Rhco3_rbc + 1.5* dcarbdt - 0.6*cap*dSdt))/vrbc;
dPO2dt= (Qb*(O2_bloodin - O2_blood)+ (DO2_m * (PO2_g - Xa(8))))./ (Vb * (alpha_O2 + (cap_b * m)));
dphvirtdt= (-Xa(9)-log(Xa(7)*((0.058*Xa(9)-0.437)*S - (0.529*Xa(9)) +4.6)))/TpH;
% matrix composite
block.Derivatives.Data(1) = dcarbdt;
block.Derivatives.Data(2)= dpco2pldt;
block.Derivatives.Data(3)= dpco2rbcdt;
block.Derivatives.Data(4)= dhco3_pldt;
block.Derivatives.Data(5)= dhco3_rbcdt;
block.Derivatives.Data(6)= dH_pldt;
block.Derivatives.Data(7)= dH_rbcdt;
block.Derivatives.Data(8)= dPO2dt;
block.Derivatives.Data(9)= dphvirtdt;
%end Derivatives
%% Terminate:
function Terminate(block)
%end Terminate
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Thank you..

Answers (0)

Categories

Find more on Block and Blockset Authoring in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!