Solving a system of ODE

4 views (last 30 days)
Esraa Abdelkhaleq
Esraa Abdelkhaleq on 14 Feb 2017
Commented: Star Strider on 15 Feb 2017
Hello,
How can I solve a system of two ODE's as follows,
dNcdt= Nc(t)*Kgr- dc*Nc(t)*Ni(t)
dNidt= ai*Nc(t) - di*Ni(t)
To obtain Nc(t) and Ni(t).
Thanks in advance.

Accepted Answer

Star Strider
Star Strider on 14 Feb 2017
It is easier to let the Symbolic Math Toolbox do the algebra:
syms ai dc di Kgr Nc(t) Ni(t) t Y
Eq1 = diff(Nc) == Nc(t)*Kgr- dc*Nc(t)*Ni(t);
Eq2 = diff(Ni) == ai*Nc(t) - di*Ni(t);
[odesys, vrs] = odeToVectorField(Eq1, Eq2);
odefcn = matlabFunction(odesys, 'Vars',[t Y ai dc di Kgr])
odefcn =
function_handle with value:
@(t,Y,ai,dc,di,Kgr)[ai.*Y(2)-di.*Y(1);Kgr.*Y(2)-dc.*Y(1).*Y(2)]
The rest should be relatively straightforward for you to complete. To solve it numerically, begin with ode45, and if your equation turns out to be ‘stiff’ because of a wide variation in parameter magnitudes, and ode45 has problems, use ode15s or one of the other stiff solvers appropriate to your system.
  8 Comments
Esraa Abdelkhaleq
Esraa Abdelkhaleq on 15 Feb 2017
OK. Thanks a lot for your help.
Star Strider
Star Strider on 15 Feb 2017
My pleasure.
Out doing stuff for 3 hours (life intrudes) so just got back to this topic.
This code:
syms ai dc di fc fch fi fih Ke Kgr Nc(t) Ni(t) Rc Rch Ri Rih t Y Nc0 Nch0 Nih0 Ni0 qpl(t)
Eq1 = diff(Nc) == Nc(t)*Kgr- dc*Nc(t)*Ni(t);
Eq2 = diff(Ni) == ai*Nc(t) - di*Ni(t);
Eq3 = diff(qpl) == fc*Rc*Nc(t)+ fi*Ri*Ni(t)+fch*Rch*Nch0+ fih*Rih*Nih0-Ke*qpl(t) ;
[odesys, vrs] = odeToVectorField(Eq1, Eq2, Eq3)
odefcn = matlabFunction(odesys, 'Vars',[t Y ai dc di fc fch fi fih Ke Kgr Nc0 Nch0 Nih0 Ni0 Rc Rch Ri Rih])
produces:
odesys =
ai*Y[2] - di*Y[1]
Kgr*Y[2] - dc*Y[1]*Y[2]
Nch0*Rch*fch - Ke*Y[3] + Nih0*Rih*fih + Rc*fc*Y[2] + Ri*fi*Y[1]
vrs =
Ni
Nc
qpl
odefcn = @(t,Y,ai,dc,di,fc,fch,fi,fih,Ke,Kgr,Nc0,Nch0,Nih0,Ni0,Rc,Rch,Ri,Rih) [ai.*Y(2)-di.*Y(1);Kgr.*Y(2)-dc.*Y(1).*Y(2);-Ke.*Y(3)+Nch0.*Rch.*fch+Nih0.*Rih.*fih+Rc.*fc.*Y(2)+Ri.*fi.*Y(1)];
The ‘vrs’ output you can interpret as:
Y(1) = Ni
Y(2) = Nc
Y(3) = qpl
You have to supply all the values for the parameters, so you can then integrate it with ode45 or ode15s (or other solver, depending on your requirements).

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!