second order finite difference scheme
6 views (last 30 days)
Show older comments
Margaret Winding
on 21 Feb 2017
Commented: Rena Berman
on 14 May 2020
I am given data t=[0 1 2 3 4 5] and y(t)=[1 2.7 5.8 6.6 7.5 9.9] and have to evaluate the derivative of y at each given t value using the following finite difference schemes.
(y(t+h)−y(t−h))/2h =y′(t)+O(h^2)
(−y(t+2h)+4y(t+h)−3y(t))/2h =y′(t)+O(h^2)
(y(t−2h)−4y(t−h)+3y(t))/2h =y′(t)+O(h^2)
I started the code, but I haven't learned what to do in the second order case. This what I have so far for the first given equation:
t= 0: 1: 5;
y(t)= [1 2.7 5.8 6.6 7.5 9.9];
n=length(y);
dfdx=zeros(n,1);
dfdx(t)=(y(2)-y(1))/(t(2)-t(1));
for i=2:n-1
dfdx(1)=(y(i+1)-y(i-1))/(t(i+1)-t(i-1));
end
dfdx(n)=(y(n)-y(n-1))/(t(n)-t(n-1));
the error that returns is "Subscript indices must either be real positive integers or logicals." referencing my use of y(t). How do I fix this to make my code correct?
Accepted Answer
Chad Greene
on 21 Feb 2017
There's no need for the (t) when you define y(t). Same with dfdx. Also, make sure you change dfdx(1) in the loop to dfdx(i).
t= 0: 1: 5;
y= [1 2.7 5.8 6.6 7.5 9.9];
n=length(y);
dfdx=zeros(n,1);
dfdx=(y(2)-y(1))/(t(2)-t(1));
for i=2:n-1
dfdx(i)=(y(i+1)-y(i-1))/(t(i+1)-t(i-1));
end
dfdx(n)=(y(n)-y(n-1))/(t(n)-t(n-1));
6 Comments
More Answers (0)
See Also
Categories
Find more on Scope Variables and Generate Names in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!