How to interpret Neural Network output if it is NaN?
1 view (last 30 days)
Show older comments
Code to classify output into 3 classes- 0,1 and 2 (indicating no fault, line fault and irradiance fault). Output shows NaN and -0.00
Code:
% code
filename= 'new_3classes_Modif_NEURAL_NET_INPUT.xlsx';
S= xlsread (filename, 'B3:B106');
T= xlsread (filename, 'C3:C106');
V= xlsread (filename, 'D3:D106');
I= xlsread (filename, 'E3:E106');
P= xlsread (filename, 'G3:F106');
O= xlsread (filename, 'H3:G106');
C = [S T V I P];
x= transpose (C);
t = O.';
net = cascadeforwardnet(10);
net = configure(net,x,t);
y1 = net(x);
net = train(net,x,t);
y2 = net(x);
plotconfusion (t,y2);
end
0 Comments
Answers (1)
Greg Heath
on 23 Apr 2017
For classification into mutually exclusive classes, the target columns should be [0,1] unit vectors. For examples, search the NEWSGROUP and ANSWERS using:
greg patternnet
and
greg patternnet tutorial
Hope this helps.
Thank you for formally accepting my answer
Greg
0 Comments
See Also
Categories
Find more on Deep Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!