Hi, can any one please help me in solving the integral involving in this problem, The pdf is also attached. Thank you in advance
11 views (last 30 days)
Show older comments
g = 1.55;
t = 2*10^-9;
L = 50*10^-6;
R = 50*10^-9;
u = (R+t)^2 - R^2;
kp = 3000;
kf = 0.663;
phi = 0.1;
phi1 = pi;
e = sqrt( 1 - (( R^2 + u ) / ( (L/2)^2 + u)));
G = ( 2 * e * ( 1 - e^2 )^1/6 ) / ( e * sqrt((1 - e^2)) + asin(e));
n = 3 * G^-g;
C = (( R + t )^2 - R^2 )/ R^2;
klr = ( kp * R * (1 + t/R - kf/ kp) * log (1 + t/R ))/ ( t * kf * log ((1 + t/R ) * kp / kf));
B = ( R/ (R + t))* ((( kp - klr)/(klr + kp)) - 1);
A = - (2 * klr / (kp + klr));
kpez = (kp + C * klr)/ (1 + C);
kpex = (A * phi * kp + B * C * phi *klr) / (A * phi + B * C * phi);
syms x;
g = inline('sqrt( (kpez)^2 * sin(x)^2+ (kpex)^2 * cos(x)^2)', 'x', 'kpez' , 'kpex')
kpe = (1/ pi) * int(g(x, kpez, kpex),x,0,pi);
B1 = (kpe + kf * (n - 1) + (n + 1)* (kpe - kf) * (1 + C) * phi1)/ (kpe + kf * (n - 1)- (kpe-kf) * (1 + C) * phi1 )
2 Comments
Accepted Answer
Torsten
on 2 May 2017
Remove
syms x
and use
g=@(x)sqrt(kpez^2*sin(x).^2+kpex^2*cos(x).^2);
kpe=1/pi*integral(g,0,pi);
Best wishes
Torsten.
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!