Self-Organising Map (SOM) with Principle Component Analysis (PCA)

4 views (last 30 days)
Dear all, I want to use Self-Organising Map (SOM) [unsupervised machine learning] for my anomaly detection problem. But before that I would like to find suitable input features that cause the best results. I have total of eight input features. Would you use Principle Component Analysis (PCA) to find best features? What would you do? Regards, Naghmeh

Accepted Answer

Greg Heath
Greg Heath on 22 Jun 2017
It is not clear if you have a well defined output.
If so, it IS NOT the variation of the inputs that are paramount.
It IS the variation of the outputs w.r.t. the inputs.
Check out principal COORDINATE analysis (very different from principal COMPONENT analysis!)
Hope that helps.
Thank you for formally accepting my answer
Greg

More Answers (0)

Categories

Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!