How can I solve PDE with boundary condition?
1 view (last 30 days)
Show older comments
Hi All, I do have Ws dC/dz + Kc d2C/dz2 - X=0 where Ws and X are constant Z from (0 to 5 step 0.5) and I do have Kc values each 0.5 m,
How can I solve this PDE with Matlab, using B.C. (C at 0= 10) and (C at 5 =0)
Thanks in advance
Riyadh
1 Comment
Kuifeng
on 18 Aug 2017
Example answer, Ref to Chap 5, Part 5.2 Steady 1D Convection and diffusion of 'An introduction to computational fluid dynamics 2nd edition' by Versteeg and Malalasekera
Answers (2)
Torsten
on 18 Aug 2017
Use "bvp4c".
By the way: this is a second-order ODE, not a PDE.
Best wishes
Torsten.
Precise Simulation
on 24 Aug 2017
Alternatively, if you still prefer to solve it as a PDE, you can quite easily input and solve it with the FEATool Multiphysics FEM Finite Element toolbox directly in Matlab. The small m-script below shows how this can be achieved
% FEATool FEA problem definition.
fea.sdim = {'z'}; % Space coordinate/dimension name.
fea.dvar = {'C'}; % Dependent variable name.
fea.sfun = {'sflag1'}; % 1st order P1 FEM shape function.
s_eqn = 'Ws*Cz + Kc*Cz_z - X = 0'; % String equation definition.
fea.eqn = parseeqn( s_eqn, fea.dvar, fea.sdim );
fea.grid = linegrid( 10, 0, 5 ); % Line grid/mesh.
fea.coef = { 'Ws' 1; 'Kc' '2*z'; 'X' '3' }; % Equation coefficents/expressions.
fea.bdr.d = {10 0}; % Dirichlet BCs.
fea.bdr.n = {[] []}; % (Optional) Neumann BCs.
% Check, parse, and solve FEA problem.
fea = parseprob( fea );
fea.sol.u = solvestat( fea );
% Postprocess and visualize solution.
postplot( fea, 'surfexpr', 'C' )
See Also
Categories
Find more on Boundary Conditions in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!