How to find volume under fitted data?
7 views (last 30 days)
Show older comments
I have a set of data, fitted by polynomial of 8th order. I want to find the volume under this surface (due to rotation around y axis for example). I am not sure how to do it. Should I use dblquad or trapz? Since dblquad needs function handle and I do not have the function, just the interpolated data (I also can not use interp2 (as suggested in some answers), because it uses linear interpolation. Any idea how I can find the volume?
Thank you!
3 Comments
Accepted Answer
Teja Muppirala
on 28 Sep 2017
Edited: Teja Muppirala
on 28 Sep 2017
If you have a function y = f(r), which it sounds like you do since you have a polynomial, then you can use integral.
y = @(r) 1-r; % y can be any arbitrary function of r. Put the function for your curve here (POLYVAL?).
a = 0; % Some limits of integration r = a to b
b = 1;
% Volume under surface of rotation:
vol = 2*pi*integral(@(r) y(r) .* r, a, b) % Put in the extra ".*r" for polar coords.
Here I used y = 1-r, so it is a cone, and I can verify that the answer I got (vol=1.047) was indeed equal to the analytical answer for the volume of a cone with unit height and radius (pi/3).
If you don't have a function, but just some discrete set of values r and y, then you can use INTERP1 along with INTEGRAL.
r = [ 0 0.2 0.4 0.6 0.8 1.0 ]; % Again, just use a unit cone for testing purposes
y = [ 1 0.8 0.6 0.4 0.2 0 ];
Yfun = @(p) interp1(r, y, p);
vol = 2*pi*integral(@(r) Yfun(r).*r, 0, 1) % Again, you'll get 1.0472
8 Comments
Torsten
on 29 Sep 2017
Edited: Torsten
on 29 Sep 2017
Teja is right - sorry for the confusion.
The formula says that the volume of the surface of revolution around the y-axis is obtained by integrating the lateral surface area A(x) of the cylinders which you get when you rotate a vertical line from the x-axis up to your polynomial function around the y-axis ( which is A(x) = 2*pi*x*P(x) ).
Best wishes
Torsten.
More Answers (0)
See Also
Categories
Find more on Surface and Mesh Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!