Expression or statement is incorrect--possibly unbalanced (, {, or [.

2 views (last 30 days)
hello every body i have an error ??? Error: File: test.m Line: 31 Column: 3 exactely in [~,scores] = predict(cl,xGrid); i have Matlab 7.8.0 (R2009a)
  1. rand(1); % For reproducibility
  2. r = sqrt(rand(100,1)); % Radius
  3. t = 2*pi*rand(100,1); % Angle
  4. data1 = [r.*cos(t), r.*sin(t)]; % Points
  5. r2 = sqrt(3*rand(100,1)+1); % Radius
  6. t2 = 2*pi*rand(100,1); % Angle
  7. data2 = [r2.*cos(t2), r2.*sin(t2)]; % points
  8. figure;
  9. plot(data1(:,1),data1(:,2),'r.','MarkerSize',15)
  10. hold on
  11. plot(data2(:,1),data2(:,2),'b.','MarkerSize',15)
  12. ezpolar(@(x)1);ezpolar(@(x)2);
  13. axis equal
  14. hold off
  15. data3 = [data1;data2];
  16. theclass = ones(200,1);
  17. theclass(1:100) = -1;
  18. %Train the SVM Classifier
  19. cl = fitcsvm(data3,theclass,'KernelFunction','rbf',...
  20. 'BoxConstraint',Inf,'ClassNames',[-1,1]);
  21. % Predict scores over the grid
  22. d = 0.02;
  23. [x1Grid,x2Grid] = meshgrid(min(data3(:,1)):d:max(data3(:,1)),...
  24. min(data3(:,2)):d:max(data3(:,2)));
  25. xGrid = [x1Grid(:),x2Grid(:)];
  26. [~,scores] = predict(cl,xGrid);
  27. % Plot the data and the decision boundary
  28. figure;
  29. h(1:2) = gscatter(data3(:,1),data3(:,2),theclass,'rb','.');
  30. hold on
  31. ezpolar(@(x)1);
  32. h(3) = plot(data3(cl.IsSupportVector,1),data3(cl.IsSupportVector,2),'ko');
  33. contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
  34. legend(h,{'-1','+1','Support Vectors'});
  35. axis equal
  36. hold off

Answers (1)

Steven Lord
Steven Lord on 10 Nov 2017
The ability to ignore specific input or output arguments in function calls using the tilde operator was introduced in release R2009b. Replace ~ with a dummy variable name, like dummy, for older releases.
  3 Comments
per isakson
per isakson on 11 Nov 2017
fitcsvm - Train binary support vector machine classifier
fitcsvm trains or cross-validates a support vector machine (SVM)
model for two-class (binary) classification on a low- through
moderate-dimensional predictor data set. fitcsvm supports...
Documentation > Statistics and Machine Learning Toolbox > Classification > Support Vector Machine Classification
Walter Roberson
Walter Roberson on 11 Nov 2017
That routine was introduced in R2014a.
In your software release there was no built-in SVM in any toolbox, so people would compile and link the third party libsvm

Sign in to comment.

Tags

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!