Why am I not getting the correct Phase angle when doing FFT

12 views (last 30 days)
Dear All,
I would like to generate a Sine Signal that have the same Phase angle as a given measured Sine signal. in order to do so I tried the following:
- if the input signal (measured voltage for example) is U (nx1), I have calculated the FFT of the input signal as following:
* Calculate FFT on a specific number of cycles (in this example FFT for one period T)
* through a for loop with a step of ts (one index per loop) re-calculate the FFT till the end of the signal.
* After that extract the phase of the fundamental frequency of all calculated FFTs
* Generate a Sine Signal using this phase angle value.
* Compare between both signal measured (original) and the generated Sine Signal
Can any one tell me why am I getting a very small phase different between the generated Sine and the measured one?
My Code looks like this:
Temp.Input.Sig = FamosDaten.U1N(:,2);% Sine wave in pu
Temp.Input.t = FamosDaten.U1N(:,1);% time in sec
Temp.Input.Finit = 50;%in Hz
Temp.Input.Cycle = 1;% number of cycles on which FFT will be calcualted
Temp.Input.Un = 400;% in V L-L
%if rem(length(Temp.Input.Sig),2)
% Temp.Input.Sig = Temp.Input.Sig(1:end-1);
% Temp.Input.t = Temp.Input.t(1:end-1);
%end
Temp.Estimate.ts = mean(diff(Temp.Input.t));
Temp.Estimate.Points = (1/Temp.Input.Finit)/Temp.Estimate.ts;
Temp.Estimate.Periods = length(Temp.Input.Sig)/Temp.Estimate.Points;
FFT.Input.Sig = Temp.Input.Sig;
FFT.Input.t = Temp.Input.t;
FFT.Input.Finit = Temp.Input.Finit;
FFT.Input.Cycle = Temp.Input.Cycle;
FFT.Cal.ts = mean(diff(FFT.Input.t));
FFT.Cal.Points = fix((1/FFT.Input.Finit)/FFT.Cal.ts)*FFT.Input.Cycle;
FFT.Cal.Periods = fix(length(FFT.Input.Sig)/FFT.Cal.Points);
for i = 1:length(FFT.Input.Sig)-FFT.Cal.Points
FFT.Cal.Sig(:,i) = FFT.Input.Sig(i:(i+(FFT.Cal.Points)));
FFT.Cal.t(:,i) = FFT.Input.t(i:(i+(FFT.Cal.Points)));
end
[FFT.Results] = FFT_Final_02032018(FFT.Cal.Sig,FFT.Input.t,FFT.Cal.ts);
Temp.Output.Sine = cos(FFT.Results.Angle);
Temp.Output.Sig = Temp.Input.Sig(1:length(Temp.Output.Sine));
Temp.Output.t = Temp.Input.t(1:length(Temp.Output.Sine));
%%the function FFT_Final_02032018 is doing FFT like this:
%function [Results] = FFT_Final_02032018(data,time,dt)
data = FFT.Cal.Sig;
time = FFT.Input.t;
[r,c] = size(data);
DFT_complex = fft(data,r)/r;
format_DFT = size(DFT_complex);
DFT.amp_inst = [abs(DFT_complex(1,:));abs(2*DFT_complex(2:floor(format_DFT(1)/2)+1,:))];
DFT.alpha = ([angle(zeros(1,format_DFT(2)));angle(DFT_complex(2:floor(format_DFT(1)/2)+1,:))])
Temp.MAX = max(DFT.amp_inst);
DFT.Mag_max_Indx = arrayfun(@(x) find(DFT.amp_inst(:,x) == Temp.MAX(x)), 1:format_DFT(2),'UniformOutput', true);
DFT.Anlage = arrayfun(@(x) DFT.alpha(DFT.Mag_max_Indx(x),x),1:format_DFT(2),'UniformOutput', true);
FFT.Results.Amplitude = DFT.amp_inst;
FFT.Results.Angle = DFT.Anlage;
the results looks like the attached Figure

Answers (1)

Wick
Wick on 2 May 2018
Without seeing your data I'm guessing you're not measuring the frequency at exactly the frequency the signal was generated at. This line makes me suspicious:
FFT.Cal.Points = fix((1/FFT.Input.Finit)/FFT.Cal.ts)*FFT.Input.Cycle;
That tells me you're not setting the time interval to be exactly the period of the original signal cut into 2^n chunks. Instead, you're building it from "about" the right number of points. So in your DFT you're actually calculating the power and phase at a slightly offset frequency from what the real signal is. So, as per any FFT, there's a spread function where the amplitude will decrease and the phase will slowly change. That explains why both the amplitude and phase of the calculated signal don't match the input.

Categories

Find more on Fourier Analysis and Filtering in Help Center and File Exchange

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!