# Getting error in the surfc plotting

106 views (last 30 days)
Mukul on 20 May 2018
Edited: Walter Roberson on 22 Jun 2018
Tn = 100;
ns = 30;
alpha = 0
beta = 0
gama = 0
phi1 = linspace(-Tn,Tn,ns);
phi2 = linspace(-Tn,Tn,ns);
phi3 = linspace(-Tn,Tn,ns);
%Phase Angle Mesh-Grid
[phi_1,phi_2,phi_3] = meshgrid(phi1,phi2,phi3);
phi_12 = phi_2 - phi_1;
phi_21 = phi_1 - phi_2;
phi_13 = phi_3 - phi_1;
phi_31 = phi_1 - phi_3;
phi_23 = phi_3 - phi_2;
phi_32 = phi_2 - phi_3;
k11 = 917.3770;
k22 = 917.3770;
k33 = 917.3770;
k12 = 458.6885;
k13 = 458.6885;
k23 = 458.6885;
X = -(k12.*cos(alpha*pi*n/360).*cos(beta*pi*n/360).*sin(phi_12*pi*n/180))-(k13.*cos(alpha*pi*n/360).*cos(gama*pi*n/360).*sin(phi_13*pi*n/180))
Y = -(k12.*cos(alpha*pi*n/360).*cos(beta*pi*n/360).*sin(phi_21*pi*n/180))+(k23.*cos(beta*pi*n/360).*cos(gama*pi*n/360).*sin(phi_23*pi*n/180))
Z = -(k13.*cos(alpha*pi*n/360).*cos(gama*pi*n/360).*sin(phi_31*pi*n/180))+(k23.*cos(beta*pi*n/360).*cos(gama*pi*n/360).*sin(phi_32*pi*n/180))
figure(1);
surfc(phi_12,phi_13,X); colorbar;
figure(2);
surfc(phi_21,phi_23,Y); colorbar;
figure(3);
surfc(phi_31,phi_32,Z); colorbar;
Getting the following error:
Error using matlab.graphics.chart.primitive.Surface/set
Value must be a vector or 2D array of numeric type
Error in matlab.graphics.chart.internal.ctorHelper (line 8)
set(obj, pvpairs{:});
Error in matlab.graphics.chart.primitive.Surface
Error in surf (line 150)
hh = matlab.graphics.chart.primitive.Surface(allargs{:});
Error in surfc (line 53)
hs = surf(cax, args{:});
Error in (line 68)
surfc(phi_12,phi_13,X); colorbar;
Mukul on 21 May 2018
Just think in a very simple way: since alpha, beta and gama is zero, so the cos term is 1 and then the X Y and Z equation becomes
X=-k*sin(phi_12)-k*sin(phi_13)
Y=-k*sin(phi_21)+k*sin(phi_23)
Z=-k*sin(phi_31)+k*sin(phi_32)
Where
k=917.377
phi_12 = phi_2 - phi_1;
phi_21 = - phi_12;
phi_13 = phi_3 - phi_1;
phi_31 = - phi_13;
phi_23 = phi_3 - phi_2;
phi_32 = - phi_23;
Now I would like to do surfc plot of X in terms of phi_12, phi_13, Y in terms of phi_21 and phi_23 and Z in terms of phi_31 and phi_32 over the range of phi_1, phi_2 and phi_3 is -100 degree to 100 degree.

Walter Roberson on 20 May 2018
You need to use isosurface() instead of surfc()
Mukul on 22 Jun 2018
If I try in other ways without using the mesh grid function, I am getting these shapes where the three shapes looks almost same
Tn = pi/2;
ns = 30;
for i=1:40
for j=1:40
phi12 = pi/4*((i-20)/20);
phi23 = pi/4*((j-20)/20);
phi31 = -phi23 - phi12;
X(i,j)=sin(phi12)-sin(phi31);
Y(i,j)=-sin(phi12)+sin(phi23);
Z(i,j)=-sin(phi23)+sin(phi31);
end
end
a=1:40;
b=a;
aon2=10:30;
bon2=aon2;
figure(1);
surfc(a,b,X); colorbar;
figure(2);
surfc(a,-b,Y); colorbar;
figure(3);
surfc(-a,-b,Z); colorbar;
end
Do you think in the previous case, the mesh grid function causes the shapes not to be same?
Could you please comment on this?