How to solve det(s^2*M+s*C(s)+K)=0 for s as fast as posible

2 views (last 30 days)
Hello, I want to solve the equation:
det(s^2*M+s*C(s)+K)=0
for s. In this equation M, C and K are big (at least 100x100), sparse matrices and C depends on s (it has the term (50/(s+50)) in it). Is there a faster way to solve this besides the following procedure?:
  1. using the symbolic variable "s"
  2. finding the determinant with the command det(s^2*M+s*C(s)+K)
  3. solve the equation using the command solve(det(s^2*M+s*C(s)+K==0,s) and then
  4. vpa(solve(det(s^2*M+s*C(s)+K)==0,s))
I tried to use polyeig(s^2*M+s*C(s)+K) as an alternative, but it just solves the equation for a constant C and not for C(s).

Answers (1)

Sergey Kasyanov
Sergey Kasyanov on 6 Jul 2018
You can try to use that code from there:
A=GaussElimination(s^2*M+s*C+K,'');
[~,d]=numden(A(end,end));
Solution=solve(d,s);
You must define C as symbolic matrix. Also I don't ensure that it will be work right, but you can rewrite GaussElimination() for your purpose (function GaussElimination() was wrote fast and for solving another narrow problem, but sometimes I use it for determinant calculation).

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Tags

No tags entered yet.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!