How can I do crossvalidation and oversampling with an imbalanced dataset?
1 view (last 30 days)
Show older comments
I have an imbalanced dataset, with very few observations belonging to category 1 and a lot belonging to category 0. Therefore I want to oversample the smaller class 1. However, then I have to be careful when doing the crossvalidation that the same observation in category 1 is not included in both sets. Does anybody know how to code up the crossvalidation?
X_train = [1 2 3 2 4 5];
y_train = [0 0 0 0 1 1];
X_test = [2 4 1];
y_test = [0 1 0];
What I would do now is to oversample the observations with category 1:
X_train = [1 2 3 2 4 5 4 5];
y_train = [0 0 0 0 1 1 1 1];
Could anybody please help me with the crossvalidation when oversampling?
0 Comments
Accepted Answer
More Answers (0)
See Also
Categories
Find more on Statistics and Machine Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!