How create training and testing data with k-fold validation using neural network ?

11 views (last 30 days)
Hi, I have finished training and testing data with the neural network formula that I calculated manually. Where is my data x = input (275x25) and t = target (275x1). Now I want to partition my data using K-fold validation where k = 5.
If I make (train or test) it manually, I have to train the input.mat data for the training, which consists of five files with dimension 220x25 every file.mat and five input.mat data for test with dimension 55x25 . I do this by inputting or loading the file repeatedly.
How can I implement the k-fold in the neural network code that I created? Is that possible, do the training and testing partitions then each data partition results in the accuracy of each partition both training and test?
please help me, I confused how where I should put code for k-fold. May anyone help some clear steps to explain it? Thanks

Accepted Answer

Yuvaraj Venkataswamy
Yuvaraj Venkataswamy on 27 Nov 2018
Edited: madhan ravi on 27 Nov 2018
  1 Comment
Oman Wisni
Oman Wisni on 27 Nov 2018
Edited: Oman Wisni on 27 Nov 2018
There are tutorial how create cross valitadion. should I partition first and then training or what?
input = inputs;
target =targets;
k=5;
cvFolds = crossvalind('Kfold');
How I create in cv ? can give me example ?

Sign in to comment.

More Answers (0)

Categories

Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!