Single-/Doubleprecision in custom CNN-Layer
1 view (last 30 days)
Show older comments
Hi everyone,
I have written a custom layer for a CNN in Matlab to double the dimension of an input (2x2-matrix becomes 4x4-matrix). For verification, I used the function checkLayer() in Matlab and I received an error I cannot get rid of concerning single-/doubleprecision.
Here my layer:
classdef myUpsamplingLayer < nnet.layer.Layer
properties
% empty
end
properties (Learnable)
% empty
end
methods
function layer = myUpsamplingLayer(name)
layer.Name = name;
end
function Z = predict(layer, X)
Z = zeros(size(X,1)*2,size(X,2)*2,size(X,3),size(X,4));
Idx = (1:2:2*size(X,1));
Z(Idx,Idx,:,:) = X; % Only purpose:
Z(Idx+1,Idx,:,:) = X; % To double the dimensions of the
Z(Idx,Idx+1,:,:) = X; % input-data
Z(Idx+1,Idx+1,:,:) = X;
end
function [dLdX] = backward(layer, X, Z, dLdZ, memory)
dLdX = zeros(size(X,1),size(X,2),size(X,3),size(X,4));
Idx = (1:2:2*size(X,1));
dLdX = dLdX + dLdZ(Idx,Idx,:,:) +dLdZ(Idx+1,Idx,:,:) + ...
dLdZ(Idx,Idx+1,:,:) +dLdZ(Idx+1,Idx+1,:,:);
end
end
end
And here the error I get when checking my layer:
>> layer = myUpsamplingLayer("Herbert")
layer =
myUpsamplingLayer with properties:
Name: 'Herbert'
Show all properties
>> checkLayer(layer,[8,8,1,10])
Skipping multi-observation tests. To enable tests with multiple observations, specify the 'ObservationDimension' parameter in checkLayer.
For layers used in convolutional neural networks, set 'ObservationDimension' to be 4.
For layers used in recurrent neural networks, set 'ObservationDimension' to be 2.
Skipping GPU tests. No compatible GPU device found.
Running nnet.checklayer.TestCase
....
================================================================================
Verification failed in nnet.checklayer.TestCase/predictIsConsistentInType(Precision=single,Device=cpu).
----------------
Test Diagnostic:
----------------
Incorrect type of 'Z' for 'predict'.
---------------------
Framework Diagnostic:
---------------------
Actual Type:
double
Expected Type:
single
------------------
Stack Information:
------------------
In C:\Program Files\MATLAB\R2018b\toolbox\nnet\cnn\+nnet\+checklayer\TestCase.m (TestCase.predictIsConsistentInType) at 131
================================================================================
...... .
Done nnet.checklayer.TestCase
__________
Failure Summary:
Name Failed Incomplete Reason(s)
==============================================================================================================================
nnet.checklayer.TestCase/predictIsConsistentInType(Precision=single,Device=cpu) X Failed by verification.
Test Summary:
10 Passed, 1 Failed, 0 Incomplete, 10 Skipped.
Time elapsed: 0.99925 seconds.
Actually if I force Z to be of single precision, I get the opposite error. Then it expects Z to be double and also the derivative of the loss is incorrect due to rounding errors. Can someone tell me how this precision has to be handled? And also if you notice any construction-errors in my layer or have suggestions for improvement, please tell me :D
Answers (1)
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!