how to call the function of my generated code from classification learner app in another .m file?
1 view (last 30 days)
Show older comments
i had two file one named trainClassifier2.m with the generated code from classification learner app and ther other is my main file named ipwebcamGUI.m that has a gui taking a picture .and i want to call the function of trainClassifier2.m into my main file to use it.
function [trainedClassifier, validationAccuracy] = trainClassifier2(trainingData)
% trainClassifier(trainingData)
% returns a trained classifier and its accuracy.
% This code recreates the classification model trained in
% Classification Learner app.
%
% Input:
% trainingData: the training data of same data type as imported
% in the app (table or matrix).
%
% Output:
% trainedClassifier: a struct containing the trained classifier.
% The struct contains various fields with information about the
% trained classifier.
%
% trainedClassifier.predictFcn: a function to make predictions
% on new data. It takes an input of the same form as this training
% code (table or matrix) and returns predictions for the response.
% If you supply a matrix, include only the predictors columns (or
% rows).
%
% validationAccuracy: a double containing the accuracy in
% percent. In the app, the History list displays this
% overall accuracy score for each model.
%
% Use the code to train the model with new data.
% To retrain your classifier, call the function from the command line
% with your original data or new data as the input argument trainingData.
%
% For example, to retrain a classifier trained with the original data set
% T, enter:
% [trainedClassifier, validationAccuracy] = trainClassifier(T)
%
% To make predictions with the returned 'trainedClassifier' on new data T,
% use
% yfit = trainedClassifier.predictFcn(T)
%
% To automate training the same classifier with new data, or to learn how
% to programmatically train classifiers, examine the generated code.
% Auto-generated by MATLAB on 03-Mar-2019 14:35:31
% Extract predictors and response
% This code processes the data into the right shape for training the
% classifier.
inputTable = trainingData;
predictorNames = {'VarName1'};
predictors = inputTable(:, predictorNames);
response = inputTable.A;
isCategoricalPredictor = [false];
% Train a classifier
% This code specifies all the classifier options and trains the classifier.
classificationTree = fitctree(...
predictors, ...
response, ...
'SplitCriterion', 'gdi', ...
'MaxNumSplits', 100, ...
'Surrogate', 'off', ...
'ClassNames', {'A'; 'B'; 'C'});
% Create the result struct with predict function
predictorExtractionFcn = @(t) t(:, predictorNames);
treePredictFcn = @(x) predict(classificationTree, x);
trainedClassifier.predictFcn = @(x) treePredictFcn(predictorExtractionFcn(x));
% Add additional fields to the result struct
trainedClassifier.RequiredVariables = {'VarName1'};
trainedClassifier.ClassificationTree = classificationTree;
trainedClassifier.About = 'This struct is a trained classifier exported from Classification Learner R2016a.';
trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g. ''trainedClassifier''. \n \nThe table, T, must contain the variables returned by: \n c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) must match the original training data. \nAdditional variables are ignored. \n \nFor more information, see <a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), ''appclassification_exportmodeltoworkspace'')">How to predict using an exported model</a>.');
% Extract predictors and response
% This code processes the data into the right shape for training the
% classifier.
inputTable = trainingData;
predictorNames = {'VarName1'};
predictors = inputTable(:, predictorNames);
response = inputTable.A;
isCategoricalPredictor = [false];
% Perform cross-validation
partitionedModel = crossval(trainedClassifier.ClassificationTree, 'KFold', 5);
% Compute validation accuracy
validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');
% Compute validation predictions and scores
[validationPredictions, validationScores] = kfoldPredict(partitionedModel);
ipwebcamGUI.m
function varargout = ipwebcamGUI(varargin)
% IPWEBCAMGUI MATLAB code for ipwebcamGUI.fig
% IPWEBCAMGUI, by itself, creates a new IPWEBCAMGUI or raises the existing
% singleton*.
%
% H = IPWEBCAMGUI returns the handle to a new IPWEBCAMGUI or the handle to
% the existing singleton*.
%
% IPWEBCAMGUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in IPWEBCAMGUI.M with the given input arguments.
%
% IPWEBCAMGUI('Property','Value',...) creates a new IPWEBCAMGUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before ipwebcamGUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to ipwebcamGUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help ipwebcamGUI
% Last Modified by GUIDE v2.5 05-Mar-2019 18:18:30
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @ipwebcamGUI_OpeningFcn, ...
'gui_OutputFcn', @ipwebcamGUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before ipwebcamGUI is made visible.
function ipwebcamGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ipwebcamGUI (see VARARGIN)
% Choose default command line output for ipwebcamGUI
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes ipwebcamGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = ipwebcamGUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%ipwebcam code
axes(handles.axes1);
url = 'http://192.168.43.1:8080/shot.jpg';
ss = imread(url);
axes(handles.axes1);
k=rgb2gray(ss);
% Threshold image - global threshold
BW = imbinarize(k);
% Invert mask
BW = imcomplement(BW);
%clear border
BW = imclearborder(BW);
% Create masked image.
maskedImage = k;
maskedImage(~BW) = 0;
%count the white pixel in image
whitepix = sum(BW(:));
axis off;
imshow(BW);
clear
2 Comments
Adam
on 6 Mar 2019
And what is the problem? You have a function so you just need to get the inputs it expects and call it.
Answers (0)
See Also
Categories
Find more on Classification Trees in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!