applying while loop for solving simultaneous equations

1 view (last 30 days)
I am trying to include a condition that 'tan(alphac)<(1/lam)' in the following code. Here, ''alphac'' is dependent of ''x''. and the value of x is determined at last. I want to write a code such that the value of x is determined by applying the condition.
code:
dbstop if error
clear all
clc
format longEng
syms x y lam
a=[4;0.55];
% The Newton-Raphson iterations starts here
LAM=linspace(0,10,11);
h=4;
q=20;
gma=18.4; nq=2*q/(gma*(h+x));
delta=26;
phi=39;
A=lam*nq/(1+nq);
kv=0;
kh=0;
da1=delta*(pi/180); da2=-delta*(pi/180); pha1=phi*(pi/180); pha2=phi*(pi/180);
dp1=delta*(pi/180); dp2=delta*(pi/180); php1=phi*(pi/180); php2=phi*(pi/180);
psi=atan(kh/(1-kv));
m=pha1+da1;
b=pha1-psi;
c=psi+da1;
alphac=atan((sin(m)*sin(b)+(sin(m)^2*sin(b)^2+sin(m)*cos(m)*sin(b)*cos(b)+A*cos(c)*cos(m)*sin(b))^0.5)/(A*cos(c)+sin(m)*cos(b)))
kg=(tan(alphac-pha1)+(kh/(1-kv)))/(tan(alphac)*(cos(da1)+sin(da1)*tan(alphac-pha1)));
r=1-lam*tan(alphac);
kq=r*kg;
A2=0;
alphac2=atan((sin(m)*sin(b)+(sin(m)^2*sin(b)^2+sin(m)*cos(m)*sin(b)*cos(b)+A2*cos(c)*cos(m)*sin(b))^0.5)/(A2*cos(c)+sin(m)*cos(b)))
kg2=(tan(alphac2-pha1)+(kh/(1-kv)))/(tan(alphac2)*(cos(da1)+sin(da1)*tan(alphac2-pha1)));
pg=0.5*gma*(1-kv)*kg2*(h+x)^2;
A=1;
alphac1=atan((sin(m)*sin(b)+(sin(m)^2*sin(b)^2+sin(m)*cos(m)*sin(b)*cos(b)+A*cos(c)*cos(m)*sin(b))^0.5)/(A*cos(c)+sin(m)*cos(b)))
kg1=(tan(alphac1-pha1)+(kh/(1-kv)))/(tan(alphac1)*(cos(da1)+sin(da1)*tan(alphac1-pha1)));
r1=1-lam*tan(alphac1);
kq1=r1*kg1;
pq=(1-kv)*(q*kq*(h+x)+0.5*q*(kq1-kq)*(h+x));
va2=asin(sin(da2)/sin(pha2))-asin(sin(psi)/sin(pha2))-da2-psi;
ka2=(1/cos(psi))*(cos(da2)*((cos(da2)-sqrt(sin(pha2)^2-sin(da2)^2)))/(cos(psi)+sqrt(sin(pha2)^2-sin(psi)^2)))*exp(-va2*tan(pha2));
vp1=asin(sin(dp1)/sin(php1))+asin(-sin(psi)/sin(php1))+dp1+psi;
kp1=(1/cos(psi))*(cos(dp1)*((cos(dp1)+sqrt(sin(php1)^2-sin(dp1)^2)))/(cos(psi)-sqrt(sin(php1)^2-sin(psi)^2)))*exp(vp1*tan(php1));
vp2=asin(sin(dp2)/sin(php2))+asin(-sin(psi)/sin(php2))+dp2+psi;
kp2=(1/cos(psi))*(cos(dp2)*((cos(dp2)+sqrt(sin(php2)^2-sin(dp2)^2)))/(cos(psi)-sqrt(sin(php2)^2-sin(psi)^2)))*exp(vp2*tan(php2));
sinda1=sin(da1); sindp1=sin(dp1); sinda2=-sin(da2); sindp2=sin(dp2);
cosda1=cos(da1); cosdp1=cos(dp1); cosda2=cos(da2); cosdp2=cos(dp2);
pp1=kp1*gma*0.5*(x^2);
pa2=ka2*gma*(x*y+0.5*(y^2)); pp2=kp2*gma*(y*(h+x)+(0.5*(y^2)));
zp1=x/3;
zp2=((0.5*(h+x)*(y^2))+((y^3)/3))/(((h+x)*y)+(0.5*(y^2)));
za2=((0.5*x*(y^2))+((y^3)/3))/((x*y)+(0.5*(y^2)));
e2=(pp1*cosdp1)+(pa2*cosda2)-(pg*cosda1)-(pp2*cosdp2)-pq;
e3=(pp1*cosdp1*zp1)+(pp2*cosdp2*zp2)-(pg*cosda1*((h+x)/3))-(pa2*cosda2*za2)-pq*(1/3)*(h+x)*((kq+2*kq1)/(kq+kq1));
g=[e2; e3];
J=jacobian([e2, e3], [x, y]);
A=zeros(2,numel(LAM));
for i=1:numel(LAM)
del=1;
indx=0;
lam=0;
while del>1e-6 && tan(alphac)<(1/lam)
gnum = vpa(subs(g,[x,y,lam],[a(1),a(2),LAM(i)]));
Jnum = vpa(subs(J,[x,y,lam],[a(1),a(2),LAM(i)]));
delx = -Jnum\gnum;
a = a + delx;
del = max(abs(gnum));
indx = indx + 1;
end
Z(:,i)=double(a)
end

Answers (0)

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!