Index in position 2 exceeds array bounds (must not exceed 1).
6 views (last 30 days)
Show older comments
Chinaemerem Valentine Nwobi
on 4 May 2019
Commented: Chinaemerem Valentine Nwobi
on 4 May 2019
%% am encountering difficulty with my codes below and I will be pasting the
%the function file and the input parameters to run them with.
%%
function [gamma,a]=ACTIVITY_WILSON(MW,rhoL,BIP,T,x)
%This program calculates the activity coefficients (gamma) and the
%activities (a) of each component of a mixture of c components using the
%Wilson model.
%INPUT PARAMETERS: MW: vector (1xc) reporting the molecular weights of the
%c components; rhoL, vector (1xc) reporting the liquid density of the c
%pure components at temperature T; BIP is a matrix cxc reporting the energy
%interaction parameters (BIP(i,j)=lambda_ij-lambda_ii, J/mol). The energy
%interaction parameters are temperature independent; T: temperature of the
%system; x vector (1xc) reporting the mole fractions of the components of
%the mixture.
%OUTPUT PARAMETERS: gamma: vector 1xc reporting the activity
%coefficients of the components of the mixture; a: vector 1xc reporting the
%activities of the components of the mixture.
%Unless otherwise stated, all input/output parameters are expressed
%according to MKS.
R=8.314;
c=length(x);
%Molar volumes of the pure liquid components composing the mixture
Vl=1./((rhoL*1000)./MW);
%Lambda terms (dimensionless) of the Wilson formula
for i=1:c
for j=1:c
Lambda(i,j)=(Vl(j)/Vl(i))*exp(-BIP(i,j)/(R*T));
end
end
for i=1:c
for j=1:c
A=sum(x.*Lambda(j,:));
C(j)=x(j)*Lambda(j,i)/A;
end
lngamma(i)=1-log(sum(x.*Lambda(i,:)))-sum(C);
gamma(i)=exp(lngamma(i));
a(i)=gamma(i)*x(i);
end
end
%%
x= Varying from 0 to 1;
MW=[46.0684 18.0153];
rhoL=[785 997];
BIP=[1972.2 ; 3700.1];
%%
Please help me find what am doing wrong . thank you but please comment if there is something am doing wrong with the way i ask because I never got replies before now.
Accepted Answer
KALYAN ACHARJYA
on 4 May 2019
Edited: KALYAN ACHARJYA
on 4 May 2019
Save the following function file>Save as : ACTIVITY_WILSON.m file name
function [gamma,a]=ACTIVITY_WILSON(MW,rhoL,BIP,T,x)
R=8.314;
c=length(x);
%Molar volumes of the pure liquid components composing the mixture
Vl=1./((rhoL*1000)./MW);
%Lambda terms (dimensionless) of the Wilson formula
for i=1:c
for j=1:c
Lambda(i,j)=(Vl(j)/Vl(i))*exp(-BIP(i,j)/(R*T));
end
end
for i=1:c
for j=1:c
A=sum(x.*Lambda(j,:));
C(j)=x(j)*Lambda(j,i)/A;
end
lngamma(i)=1-log(sum(x.*Lambda(i,:)))-sum(C);
gamma(i)=exp(lngamma(i));
a(i)=gamma(i)*x(i);
end
end
Now call the above function from different Matlab scripts file:
%%
x=0.2; % Any value 0 to 1
MW=[46.0684 18.0153];
rhoL=[785 997];
BIP=[1972.2; 3700.1];
T=30; % Hopefully this is tempature, set accordingly
[gamma,a]=ACTIVITY_WILSON(MW,rhoL,BIP,T,x)
Result
gamma =
1.358311135425136e+04
a =
2.716622270850272e+03
More Answers (0)
See Also
Categories
Find more on Desktop in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!