Is it possible to use non-constant Neumann boundary conditions with the parabolic pde solver?
1 view (last 30 days)
Show older comments
I am looking to solve the 2D heat equation T = T(r, theta, t) on a circle. I have a non-constant Neumann BC on the outside of the circle (r = a), where I have a heat flux as a function of theta (-k*dT/dx = q(theta) at r = a).
I know that I can decompose theta in to atan(y/x) -- in general though, I am unclear on how to use either the pdebound or assemb functions to prescribe these boundary conditions.
Thank you for your help!
0 Comments
Accepted Answer
Bill Greene
on 31 Aug 2012
Hi,
You are definitely on the right track in assuming that creating a pdebound function is a good way to define this BC. I created a simple example below that assumes you have an inward heat flux of 5*sin(theta), defines a pdebound function for this BC (I called it boundaryConditions), and then uses that to solve the heat equation on a circle. Hopefully this example will get you past some of the sticky issues.
Regards,
Bill
function transientHeatCircle( )
radius = 2;
gdm=[1 0 0 radius]';
g = decsg(gdm, 'C1', ('C1')');
[p,e,t]=initmesh(g);
c = 1; d = 2; a = 0; f = 0;
b = @boundaryConditions;
u0=0; tlist=0:.001:1;
u=parabolic(u0, tlist, b,p,e,t,c,a,f,d);
figure; pdeplot(p, e, t, 'xydata', u(:,end), 'mesh', 'on'); axis equal;
title 'Final Temperature Distribution'
n=4; %grid point at theta=pi/2
figure; plot(tlist, u(n,:)); grid on;
title(sprintf('Temperature at (%3.1f,%3.1f) as a Function of Time', ...
p(1,n), p(2,n)));
end
function [ q, g, h, r ] = boundaryConditions( p, e, u, time )
N = 1;
ne = size(e,2);
q = zeros(N^2, ne);
% calculate coordinates of edge mid-points
xy1 = p(:,e(1,:));
xy2 = p(:,e(2,:));
xyMidEdge = (xy1+xy2)/2;
g = 5*sin(atan2(xyMidEdge(2,:),xyMidEdge(1,:)));
h = zeros(N^2, 2*ne);
r = zeros(N, 2*ne);
end
2 Comments
Bill Greene
on 2 Sep 2012
My code handled the simple case where you have a single BC expression that applies to all edges on the boundary. A more general version of a boundary function might look something like this.
function [ q, g, h, r ] = boundFunc( p, e, u, time )
N = 1; % number of PDEs in the system
ne = size(e,2);
q = zeros(N^2, ne);
g = zeros(N, ne);
h = zeros(N^2, 2*ne);
r = zeros(N, 2*ne);
for i=1:ne
ei = e(5,i);
if(ei == 1)
% apply appropriate BCs on edge 1
else if(ei == 3)
% apply appropriate BCs on edge 3
else if(ei == ...)
% apply appropriate BCs on this edge
end
end
end
More Answers (0)
See Also
Categories
Find more on Eigenvalue Problems in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!