formula for nonlinear regression model
1 view (last 30 days)
Show older comments
Maura E. Monville
on 14 Aug 2019
Commented: SYED IMTIAZ ALI SHAH
on 14 Aug 2019
Dear MatLab Experts,
I have four column vectors with 14 elements representing respectively:
Area, Max.Diameter, Min.Diameter, Field Size Factor (FSF) of custom-made collimators.
I believe the FSF depends somehow on the other three quantities. The dependence is not linear.
I woud like to tryto model the FSF as a power law involving products of the other quantities.
For instance, FSF ~a*(Max.Diam*Min.Diam)^b + c*(Area/Max.Diam)^d + e*(Area/Min.Diam)^f + g*(Max.Diam/Min.Diam)^h + i
where a, b,c,d,e,f,g,h,i are the unknown model coefficients.
I am pretty sure most of the terms are useless. Perobably just one is necessary for the model. However, I do not know which one is the most important term. I expect the modeling function will figure that out.
My problem is that I do not know how to write the above formula in the proper format expected by the nonlinear regression functions.
I need some help to set up the above outlined particular model.
Thank you very much in advance.
Best regards,
Maura E. M.
0 Comments
Accepted Answer
SYED IMTIAZ ALI SHAH
on 14 Aug 2019
Is this what you want?
x = MaxFDiam .* MinFDiam + Area ./ MaxFDiam + Area ./ MinFDiam + MaxFDiam ./ MinFDiam; % your formula
Linear model Poly7:
Your resultant equation with coefficients.
f(x) = p1*x^7 + p2*x^6 + p3*x^5 + p4*x^4 + p5*x^3 +
p6*x^2 + p7*x + p8
Coefficients (with 95% confidence bounds):
p1 = 2.961e-18 (-5.495e-18, 1.142e-17)
p2 = -6.914e-15 (-2.189e-14, 8.064e-15)
p3 = 6.708e-12 (-4.044e-12, 1.746e-11)
p4 = -3.496e-09 (-7.522e-09, 5.297e-10)
p5 = 1.054e-06 (2.132e-07, 1.895e-06)
p6 = -0.0001832 (-0.0002798, -8.656e-05)
p7 = 0.01691 (0.01138, 0.02244)
p8 = 0.3618 (0.2454, 0.4782)
Goodness of fit:
SSE: 5.048e-06
R-square: 0.9998
Adjusted R-square: 0.9995
RMSE: 0.0009173
4 Comments
More Answers (0)
See Also
Categories
Find more on Regression in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!