Relative Gain Array(RGA) for Laplacian matrix ( which have zero eigenvalues )
31 views (last 30 days)
Show older comments
Namjin Park
on 23 Aug 2019
Commented: Namjin Park
on 28 Aug 2019
Thanks to seeing my question,
I have problem to get Relative Gain Array (RGA) matrix for Laplacian matrix
Laplacian matrix contion : eigenvalue <= 0 alway has 0 eigenvalue,
I already get RGA matrix under the condition of matrix which is Positive definite, (eigenvalues >0 case - Not Laplacian)
RGA = G(0) * trans( G(0)^(-1) ).
when there is zero eigenvalue in transfer functuin G,
I can't calculate G(0), that goes to infinie,
So how can i get RGA when there is zero eigenvalue in Transfer function ???
Thanks,
0 Comments
Accepted Answer
Shashank Gupta
on 28 Aug 2019
Generally, RGA is calculated for non-singular matrices but in some specific cases similar idea can be expanded to singular matrices using the concept of Moore-Penrose pseudoinverse, that can be used to approximate for some properties of inverse.
MATLAB has a function to calculate Moore Pseudoinverse “pinv” but make sure to cross check the pseudo inverse, does it satisfy all RGA properties. Many times, it doesn’t satisfy one essential property of RGA – sum of rows is unity, but still worth giving a try.
0 Comments
More Answers (1)
Namjin Park
on 28 Aug 2019
2 Comments
Shashank Gupta
on 28 Aug 2019
Conventionally we use Moore-Penrose psuedoinverse but as you mentioned sometimes it fails to preserve critical propertiy of RGA(which is row sum property in your case). In such scenerio you can either say the rga_G matrix which you got can act as a approximate RGA or if you want more precise matrix then there are some recent work, which has been done on the RGA for singular and rectangular metrices, you can refer to this link for more information.
I hope it helps
See Also
Categories
Find more on Linear Algebra in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!