Fit Powerlaw to Data
42 views (last 30 days)
Show older comments
Tobias Bramminge
on 6 Dec 2019
Commented: Star Strider
on 8 May 2021
Hi all!
I need to fit following Power Law to some experimental data.
y = C(B+x)^n
The data I have is as the following:
STRESS = [0.574, 367.364, 449.112, 531.087, 596.241, 649.097, 695.038, 737.173, 815.008];
STRAIN = [2.8746e-04, 0.00063, 0.0459, 0.0901, 0.1320, 0.1725, 0.2132, 0.2557, 0.3579];
The variables are x and y are STRAIN and STRESS respectively, and I would like estimates for C, B and n.
I'm not sure how to use the fitting tool for this kind of specific model.
Any ideas or suggestions would be greatly appreciated!
Thank you very much!
2 Comments
John D'Errico
on 6 Dec 2019
Edited: John D'Errico
on 6 Dec 2019
One requirement is that you have the same number of values in each vector. You don't meet that basic requirement.
numel(STRESS)
ans =
8
numel(STRAIN)
ans =
9
Once you have actually told us the correct data, then you need to explain which variable is intended to be x, and which is y. If you want help, then make it possible, even easy, for someone to help you.
Accepted Answer
Star Strider
on 6 Dec 2019
Edited: Star Strider
on 6 Dec 2019
Try this:
STRESS = [0.574, 367.364, 449.112, 531.087, 596.241, 649.097, 695.038, 737.173, 815.008];
STRAIN = [2.8746e-04, 0.00063, 0.0459, 0.0901, 0.1320, 0.1725, 0.2132, 0.2557, 0.3579];
yfcn = @(b,x) b(1).*(b(2)+x).^b(3);
B0 = [1E-6; 100; 2];
B = fminsearch(@(b) norm(STRAIN - yfcn(b,STRESS)), B0);
xv = linspace(min(STRESS), max(STRESS), 50);
yv = yfcn(B,xv);
figure
plot(STRESS, STRAIN, 'pg')
hold on
plot(xv, abs(yv), '-r')
hold off
grid
text(150, 0.27, sprintf('y = %.3E \\cdot (%.3f + x)^{%.3f}', B))
xlabel('STRESS')
ylabel('STRAIN')
Experiment to get different results.
EDIT — (6 Dec 2019 at 17:50)
Added plot image:
7 Comments
Star Strider
on 8 May 2021
vedavathi — It is a straightforward calculation, however it is easier to use fitnlm with ‘yfcn’ to get that and a number of other statistics.
More Answers (2)
Image Analyst
on 6 Dec 2019
I'd use fitnlm() in the Statistics and Machine Learning Toolbox.
I suggest that you don't try to fit the first point. When I try to do that, it's impossible to get a fit. I get error messages that says the Jacobian is not well defined. "Warning: The Jacobian at the solution is ill-conditioned, and some model parameters may not be estimated well (they are not identifiable). Use caution in making predictions. " and it won't do the fit.
But if I try to fit from the second point onwards, I still get the warning but the fit seems reasonable. See plot below. If you want you could do a piece-wise fit where you fit everything to the left of the second point to a line.
0 Comments
See Also
Categories
Find more on Stress and Strain in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!