CONVERSION OF ODE TO RECURRENCE RELATION

3 views (last 30 days)
MINATI
MINATI on 2 Jan 2020
Edited: MINATI on 7 Jan 2020
syms x k r f(x) g(x) a b beta b1 M L
syms F(k) G(k)
F(0)=0;F(1)=1;F(2)=a/2;G(0)=0;G(1)=1/2;G(2)=b/2;b1=1/beta;
%%%%dnf=diff(f,x,n)
f=F(k);g=G(k);d1f=(k+1)*F(k+1);d2f=(k+1)*(k+2)*F(k+2);d3f=(k+1)*(k+2)*(k+3)*F(k+3);d1g=(k+1)*G(k+1);
d2g=(k+1)*(k+2)*G(k+2);d3g=(k+1)*(k+2)*(k+3)*G(k+3);
f*d2f=sum((k-r+1)*(k-r+2)*F(r)*F(k-r+2),r,0,k);g*d2g=sum((k-r+1)*(k-r+2)*G(r)*G(k-r+2),r,0,k);
f*d2g=sum((k-r+1)*(k-r+2)*F(r)*G(k-r+2),r,0,k);g*d2f=sum((k-r+1)*(k-r+2)*G(r)*F(k-r+2),r,0,k);
(d1f)^2=sum((k-r+1)*(r+1)*F(r+1)*F(k-r+1),r,0,k);(d1g)^2=sum((k-r+1)*(r+1)*G(r+1)*G(k-r+1),r,0,k);
eqns=simplify((1+b1)*d3f-(d1f)^2+f*d2f+g*d2f-(M+L)*d1f==0,(1+b1)*d3g-(d1g)^2+f*d2g+g*d2g-(M+L)*d1g==0)
Rsolve(eqns,{F(k+3),G(k+2)});
%% I want a recurrence relation in terms of F(k+3) and G(k+2) (k = 0 -> Inf) but unable to code it properly

Answers (0)

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!